Li, Hua and Bai, Zhi Dong and Wong, Wing Keung (2015): High dimensional Global Minimum Variance Portfolio.
Preview |
PDF
MPRA_paper_66284.pdf Download (779kB) | Preview |
Abstract
This paper proposes the spectral corrected methodology to estimate the Global Minimum Variance Portfolio (GMVP) for the high dimensional data. In this paper, we analysis the limiting properties of the spectral corrected GMVP estimator as the dimension and the number of the sample set increase to infinity proportionally. In addition, we compare the spectral corrected estimation with the linear shrinkage and nonlinear shrinkage estimations and obtain that the performance of the spectral corrected methodology is best in the simulation study.
Item Type: | MPRA Paper |
---|---|
Original Title: | High dimensional Global Minimum Variance Portfolio |
Language: | English |
Keywords: | Global Minimum Variance Portfolio, Spectral Corrected Covariance, Sample Covariance |
Subjects: | C - Mathematical and Quantitative Methods > C0 - General > C02 - Mathematical Methods |
Item ID: | 66284 |
Depositing User: | Wing-Keung Wong |
Date Deposited: | 27 Aug 2015 06:49 |
Last Modified: | 28 Sep 2019 15:37 |
References: | Zhidong D Bai, Jack W Silverstein, et al. Clt for linear spectral statistics of large-dimensional sample covariance matrices. The Annals of Probability, 32(1A):553–605, 2004. Malcolm P Baker, Brendan Bradley, and Jeffrey Wurgler. Benchmarks as limits to arbitrage: Understanding the low-volatility anomaly. Financial Analysts Journal, 67(1), 2011. Peter J Bickel and Elizaveta Levina. Regularized estimation of large covariance matrices. The Annals of Statistics, pages 199–227, 2008. Taras Bodnar and Arjun K Gupta. Robustness of the inference procedures for the global minimum variance portfolio weights in a skewnormal model†. The European Journal of Finance, (ahead-of-print):1–19, 2012. Taras Bodnar and Wolfgang Schmid. The distribution of the sample variance of the global minimum variance portfolio in elliptical models. Statistics, 41(1):65–75, 2007. Taras Bodnar and Wolfgang Schmid. A test for the weights of the global minimum variance portfolio in an elliptical model. Metrika, 67(2):127–143, 2008. Taras Bodnar and Wolfgang Schmid. Econometrical analysis of the sample efficient frontier. The European journal of finance, 15(3):317–335,2009. T Tony Cai and Harrison H Zhou. Minimax estimation of large covariance matrices under l1 norm.Statist. Sinica, 22:1319–1378, 2012. Jiaqi Chen, Bernard Delyon, and J-F Yao. On a model selection problem from high-dimensional sample covariance matrices. Journal of Multivariate Analysis, 102(10):1388–1398, 2011. Roger Clarke, Harindra De Silva, and Steven Thorley. Minimum-variance portfolio composition. Journal of Portfolio Management, 37(2):31, 2011. Roger G Clarke, Harindra De Silva, and Steven Thorley. Minimum-variance portfolios in the us equity market. The journal of portfolio management, 33(1):10–24, 2006. Jianqing Fan, Yingying Fan, and Jinchi Lv. High dimensional covariance matrix estimation using a factor model. Journal of Econometrics, 147(1):186–197, 2008. Gabriel Frahm and Christoph Memmel. Dominating estimators for minimum-variance portfolios. Journal of Econometrics, 159(2):289–302, 2010. Vasyl Golosnoy and Yarema Okhrin. Multivariate shrinkage for optimal portfolio weights. The European Journal of Finance, 13(5):441–458, 2007. Jeremiah Green, John RM Hand, and X Frank Zhang. The supraview of return predictive signals. Review of Accounting Studies, 18(3):692–730, 2013. Noureddine El Karoui. Spectrum estimation for large dimensional covariance matrices using random matrix theory. The Annals of Statistics, pages 2757–2790, 2008. Alexander Kempf and Christoph Memmel. On the estimation of the global minimum variance portfolio. Available at SSRN 385760, 2003. Kshitij Khare, Bala Rajaratnam, et al. Wishart distributions for decomposable covariance graph models. The Annals of Statistics, 39(1):514–555, 2011. Olivier Ledoit and Sandrine Péché. Eigenvectors of some large sample covariance matrix ensembles. Probability Theory and Related Fields, 151 (1-2):233–264, 2011. Olivier Ledoit and Michael Wolf. Honey, i shrunk the sample covariance matrix. The Journal of Portfolio Management, 30(4):110–119, 2004a. Olivier Ledoit and Michael Wolf. A wellconditioned estimator for large-dimensional covariance matrices. Journal of multivariate analysis, 88(2):365–411, 2004b. Olivier Ledoit, Michael Wolf, et al. Nonlinear shrinkage estimation of large-dimensional covariance matrices. The Annals of Statistics, 40 (2):1024–1060, 2012. Weiming Li and Jianfeng Yao. A local moment estimator of the spectrum of a large dimensional covariance matrix. arXiv preprint arXiv:1302.0356, 2013. Vladimir A Marčenko and Leonid Andreevich Pastur. Distribution of eigenvalues for some sets of random matrices. Sbornik: Mathematics, 1(4): 457–483, 1967. Christoph Memmel and Alexander Kempf. Estimating the global minimum variance portfolio. Available at SSRN 940367. Xavier Mestre. Improved estimation of eigenvalues and eigenvectors of covariance matrices using their sample estimates. Information Theory, IEEE Transactions on, 54(11):5113–5129, 2008. Yarema Okhrin and Wolfgang Schmid. Distributional properties of portfolio weights. Journal of econometrics, 134(1):235–256, 2006. Bala Rajaratnam, Hélene Massam, Carlos M Carvalho, et al. Flexible covariance estimation in graphical gaussian models. The Annals of Statistics, 36(6):2818–2849, 2008. N Raj Rao, James A Mingo, Roland Speicher, and Alan Edelman. Statistical eigen-inference from large wishart matrices. The Annals of Statistics, pages 2850–2885, 2008. Angelika Rohde, Alexandre B Tsybakov, et al. Estimation of high-dimensional low-rank matrices. The Annals of Statistics, 39(2):887–930, 2011. Jack W Silverstein. Strong convergence of the empirical distribution of eigenvalues of large dimensional random matrices. Journal of Multivariate Analysis, 55(2):331–339, 1995. Jack W Silverstein and ZD Bai. On the empirical distribution of eigenvalues of a class of large dimensional random matrices. Journal of Multivariate analysis, 54(2):175–192, 1995. Dominik Wied, Daniel Ziggel, and Tobias Berens. On the application of new tests for structural changes on global minimum-variance portfolios. Statistical Papers, 54(4):955–975, 2013. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/66284 |