Szabó, Norbert (2015): Methods for regionalizing input-output tables. Published in: Regional Statistics , Vol. 1, No. 5 (July 2015): pp. 44-65.
Preview |
PDF
MPRA_paper_73947.pdf Download (1MB) | Preview |
Abstract
The present paper introduces the most common methods of regionalizing national input-output tables. First we describe the different groups of methods based on our review of the international literature regarding regionalization. Then we focus on particular methods that can be applied for Hungarian counties highlighting their advantages and disadvantages and synthetize the empirical results of them again based on the literature. On the basis of these experiences we attempt to create a complex method fitted to the available Hungarian regional data. For better understanding in the end we apply our method on an illustrative example consisting of three regions with hypothetical sectors and data.
Item Type: | MPRA Paper |
---|---|
Original Title: | Methods for regionalizing input-output tables |
English Title: | Methods for regionalizing input-output tables |
Language: | English |
Keywords: | input-output table, regionalization, interregional trade |
Subjects: | P - Economic Systems > P3 - Socialist Institutions and Their Transitions > P33 - International Trade, Finance, Investment, Relations, and Aid P - Economic Systems > P4 - Other Economic Systems > P45 - International Trade, Finance, Investment, and Aid R - Urban, Rural, Regional, Real Estate, and Transportation Economics > R0 - General > R00 - General R - Urban, Rural, Regional, Real Estate, and Transportation Economics > R1 - General Regional Economics > R15 - Econometric and Input-Output Models ; Other Models |
Item ID: | 73947 |
Depositing User: | Géza Tóth |
Date Deposited: | 23 Sep 2016 11:27 |
Last Modified: | 26 Sep 2019 08:48 |
References: | Black, William R. (1972): Interregional commodity flows: Some experiments with the gravity model Journal of Regional Science 12 (1): 107–118. Bonfiglio, A. (2005): A Sensitivity Analysis of the Impact of CAP Reform. Alternative Methods of Constructing Regional I-O Tables PhD Dissertation. Polytechnic University of Marche Ancona, Italy. Bonfiglio, A.–Chelli, F. (2008): Assessing the Behaviour of Non-Survey Methods for Constructing Regional Input–Output Tables through a Monte Carlo Simulation Economic Systems Research 20 (3): 243–258. Brand, S. (2012): A Note on Methods of Estimating Regional Input-Output Tables: Can the FLQ Improve the RAS Algorithm? The Business School with Plymouth University, Working Paper., Plymouth. Canning, P.–Wang, Z. (2005): A flexible mathematical programming model to estimate interregional input-output accounts Journal of Regional Science 45 (3): 539–563. Európai Bizottság (2010): A forrás-felhasználás táblák és az input-output keretrendszer In: Javaslat az Európai Parlament és a Tanács Rendelete az Európai Unióban alkalmazandó nemzeti és regionális számlák európai rendszeréről 2010.12.20. COM(2010) 774 végleges. A. melléklet/9. fejezet, Brüsszel. Flegg, A. T.–Webber, C. D. (2000): Regional Size, Regional Specialization and the FLQ Formula Regional Studies 34 (6): 563–569. Flegg, A. T.–Tohmo, T. (2013): Regional Input−Output Tables and the FLQ Formula: A Case Study of Finland Regional Studies 47 (5): 713–721. Flegg, A. T.–Webber, C. D.–Elliott, M. V. (1995): On the Appropriate Use of Location Quotients in Generating Regional Input–Output Tables Regional Studies 29 (6): 547–561. Greenstreet, D. (1989): A Conceptual Framework for Construction of Hybrid Regional Input-Output Models Socio-Economic Planning Sciences 23 (5): 283–289. Harris, R. I. D.–Liu, A. (1997): Input-Output Modelling of the Urban and Regional Economy the Importance of External Trade Regional Studies 32 (9): 851–862. Jackson, R. W. (1998): Regionalizing National Commodity-by-Industry Accounts Economic Systems Research 10 (3): 223–238. Jiang, X.–Dietzenbacher, E.–Los, B. (2012): Improved Estimation of Regional Input–Output Tables Using Cross-regional Methods Regional Studies 46 (5): 621–637. Junius, T.–Oosterhaven, J. (2003): The Solution of Updating or Regionalizing a Matrix with both Positive and Negative Entries Economic System Research 15 (1): 87–97. Kipnis, B. A. (1984): Input-Output Tables for Medium-Sized Cities: Survey Coefficients or Short-cut Methods? A Case Study in Brazil Journal of Regional Science 24 (3): 443–450. Kowalewski, J. (2012): Regionalization of national input-output tables: empirical evidence on the use of the FLQ formula Hamburg Institute of Regional Economics, HWWI Research Paper No. 126., Hamburg. Központi Statisztikai Hivatal (2005): Az Ágazati Kapcsolatok Mérlegének matematikai feldolgozása, 2000 KSH, Budapest. Kronenberg, T. (2007): How Can Regionalization Methods Deal With Cross-hauling? Institut für Energieforschung (IEF), Systemforschung und Technologische Entwicklung (STE), Working Paper 2007/14., Jülich. Lahr, M. L. (1993): A Review of the Literature Supporting the Hybrid Approach to Constructing Regional Input-Output Models Economic Systems Research 5 (3): 277–293. Lahr, M. L. (2001): A strategy for producing hybrid regional input-output tables In: Lahr M. L.–Dietzenbacher, E. Input-Output Analysis: Frontiers and Extensions pp. 1–31., Palgrave, London. Lahr, M. L.–de Mesnard, L. (2004): Biproportional Techniques in Input–Output Analysis: Table Updating and Structural Analysis Economic System Research 16 (2): 115–134. Leontief, W. (1936): Quantitative Input-Output Relations in the Economic System of the United States Review of Economics and Statistics 18: 105–125. Leontief, W. (1941): The Structure of American Economy 1919–1939 Oxford University Press, New York. Lindberg, G. (2011): On the appropriate use of (input-output) coefficients to generate non-survey regional input-output tables: Implications for the determination of output multipliers ERSA Conference Paper, No. ersa10p800. Mínguez, R–Oosterhaven, J.–Escobedo, F. (2009): Cell-corrected RAS method (CRAS) for updating or regionalizing an input-output matrix Journal of Regional Science 49 (2): 329–348. McDougall, R. A. (1999): Entropy Theory and RAS are Friends GTAP Working Paper No. 06., Pardue University West Lafayette, USA. McCann, P–Dewhurst, J. HH (1998): Regional Size, Industrial Location and Input-Output Expenditure Coefficients Regional Studies 32 (5): 435–444. McMenamin, D. G.–Haring, J. E. (1974): An Appraisal of Nonsurvey Techniques for Estimating Regional Input-Output Models Journal of Regional Science 14 (2): 191–205. Miller, R. E.–Blair, P. D. (2009): Input-Output Analysis: Foundations and Extensions Cambridge University Press, New York. Morrison, W. I.–Smith, P. (1974): Nonsurvey Input-Output Techniques at the Small Area Level: An Evaluation Journal of Regional Science 14 (1): 1–14. Oosterhaven, J.–van der Knijff, E. C.–Eding, G. J. (2003): Estimating interregional economic impacts: an evaluation of nonsurvey, semisurvey, and full-survey methods Environment and Planning A 35 (1): 5–18. Patriquin, M. N.–Alavalapati, J. R.R.–Wellstead, A. M.–White, W. A. (2002): A comparison of impact measures from hybrid and synthetic techniques: A case study of the Foothills Model Forest The Annals of Regional Science 36 (2): 265–278. Pigozzi, B. WM.–Hinojosa, R. C. (1985): Regional Input-Output Inverse Coefficients Adjusted from National Tables Growth and Change 16 (1): 8–12. Ralston, S. N.–Hastings, S. E. (1986): Improving Regional I-O Models: Evidence Against Uniform Purchase Coefficients Across Rows The Annals of Regional Science 20 (1) 65–80. Révész, T. (2011): A Magyar Gazdaság 2010. Évi Ágazati Kapcsolatok Mérlegeinek Becslése. ENERGIAKLUB Szakpolitikai Intézet és Módszertani Központ, Budapest. Riddington, G.–Gibson, H.–Anderson, J. (2006): Comparison of Gravity Model, Survey and Location Quotient-based Local Area Tables and Multipliers Regional Studies 40 (9): 1069–1081. Round, J. I. (1972): Regional Input-Output Models in the UK: A Reappraisal of Some Techniques Regional Studies 6 (1): 1–9. Round, J. I. (1983): Nonsurvey Techniques: A Critical Review of the Theory and the Evidence International Regional Science Review 8 (3): 189–212. Stevens B. H.–Treyz, G. I.–Ehrlich, D. J.–Bower, J. R. (1983): A New Technique for the Construction of Non-Survey Regional Input-Output Models and Comparison with Two Survey-Based Models International Regional Science Review 8: 271–286. Stone, R. (1961): Input-Output and National Accounts Organization for Economic Cooperation and Development, Paris. Swaminathan, A. M. (2008): Methods for generation of a regional input-output table for the state of Maharashtra: A comparative analysis Working Paper No.29, UDE Dr. Vibhooti Shukla Unit in Urban Economics & Regional Development, University of Mumbai, Mumbai. Thissen, M.–van Oort, F.–Diodato, D.–Ruijs, A (2010): Regional Competitiveness and Smart Specialization in Europe: Place-based Development in International Economic Networks Edward Elgar Publishing, Cheltenham. Tohmo, T. (2004): New Developments in the Use of Location Quotients to Estimate Regional Input-Output Coefficients and Multipliers Regional Studies 38 (1): 43–54. Varga, A.–Hau-Horváth, O.–Szabó, N.–Járosi, P. (2013): A GMR–Európa-modell alkalmazása kék gazdaság-típusú innovációk hatásvizsgálatára. Területi Statisztika 53 (5): 411–434. Zalai, E. (2012): Matematikai Közgazdaságtan II.: Többszektoros modellek és makrogazdasági elemzések Akadémia Kiadó, Budapest. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/73947 |