Duffy, Sean and Smith, John (2017): Category effects on stimulus estimation: Shifting and skewed frequency distributions - A reexamination.
This is the latest version of this item.
Preview |
PDF
MPRA_paper_81254.pdf Download (226kB) | Preview |
Abstract
Duffy, Huttenlocher, Hedges, and Crawford (2010) [Psychonomic Bulletin & Review, 17(2), 224-230] report on experiments where participants estimate the lengths of lines. These studies were designed to test the Category Adjustment Model (CAM), a Bayesian model of judgments. CAM predicts that there will exist a bias toward the running mean of the lines and that judgments will not be differentially affected by recent stimuli. The authors report that their analysis provides evidence consistent with CAM. We reexamine their data. First, we attempt to replicate their analysis and we obtain different results. Second, we conduct a different statistical analysis. We find significant recency effects and we identify several specifications where the running mean is not significantly related to judgment. Third, we conduct a test of an auxiliary prediction of CAM: that the bias towards the mean will increase with exposure to the distribution. We do not find such a relationship. Fourth, we produce a simulated dataset that is consistent with CAM and our methods correctly identify it as consistent with CAM. We conclude that the Duffy et al. (2010) dataset is not consistent with CAM. We also discuss how conventions in psychology do not sufficiently reduce the likelihood of these mistakes in future research. We hope that the methods that we employ will be used to evaluate other datasets.
Item Type: | MPRA Paper |
---|---|
Original Title: | Category effects on stimulus estimation: Shifting and skewed frequency distributions - A reexamination |
Language: | English |
Keywords: | judgment; memory; Category Adjustment Model; central tendency bias; recency effects; Bayesian judgments |
Subjects: | C - Mathematical and Quantitative Methods > C9 - Design of Experiments > C91 - Laboratory, Individual Behavior |
Item ID: | 81254 |
Depositing User: | John Smith |
Date Deposited: | 09 Sep 2017 04:53 |
Last Modified: | 11 Oct 2019 11:37 |
References: | Allred, S., Crawford, L.E., Duffy, S., & Smith, J. (2016). Working memory and spatial judgments: Cognitive load increases the central tendency bias. Psychonomic Bulletin & Review, 23(6), 1825-1831. Barth, H., Lesser, E., Taggart, J., & Slusser, E. (2015). Spatial estimation: A non‐Bayesian alternative. Developmental Science, 18(5), 853-862. Blackwell, D. & Dubins, L. (1962). Merging of opinions with increasing information. Annals of Mathematical Statistics, 33, 882-886. Bowers, J. S., & Davis, C. J. (2012a). Bayesian just-so stories in psychology and neuroscience. Psychological Bulletin, 138(3), 389-414. Bowers, J. S., & Davis, C. J. (2012b). Is that what Bayesians believe? Reply to Griffiths, Chater, Norris, and Pouget (2012). Psychological Bulletin, 138(3), 423-426. Cassey, P., Hawkins, G. E., Donkin, C., & Brown, S. D. (2016). Using alien coins to test whether simple inference is Bayesian. Journal of Experimental Psychology: Learning, Memory, and Cognition, 42(3), 497-503. Chater, N., Goodman, N., Griffiths, T. L., Kemp, C., Oaksford, M., & Tenenbaum, J. B. (2011). The imaginary fundamentalists: The unshocking truth about Bayesian cognitive science. Behavioral and Brain Sciences, 34(4), 194-196. Chater, N., Tenenbaum, J. B., & Yuille, A. (2006). Probabilistic models of cognition: Conceptual foundations. Trends in Cognitive Sciences, 10(7), 287-291. Choplin, J. M., & Hummel, J. E. (2002). Magnitude comparisons distort mental representations of magnitude. Journal of Experimental Psychology: General, 131(2), 270-286. Corneille, O., Huart, J., Becquart, E., & Brédart, S. (2004). When memory shifts toward more typical category exemplars: Accentuation effects in the recollection of ethnically ambiguous faces. Journal of Personality and Social Psychology, 86(2), 236-250. DeCarlo, L. T., & Cross, D. V. (1990). Sequential effects in magnitude scaling: Models and theory. Journal of Experimental Psychology: General, 119(4), 375-396. Duffy, S., Huttenlocher, J., Hedges, L. V., & Crawford, L. E. (2010). Category effects on stimulus estimation: Shifting and skewed frequency distributions. Psychonomic Bulletin & Review, 17, 224-230. Elqayam, S., & Evans, J. S. B. (2011). Subtracting “ought” from "is": Descriptivism versus normativism in the study of human thinking. Behavioral and Brain Sciences, 34(5), 233-248. Estes, W. K. (1956). The problem of inference from curves based on group data. Psychological Bulletin, 53(2), 134-140. Feldman, N. H., Griffiths, T. L., & Morgan, J. L. (2009). The influence of categories on perception: Explaining the perceptual magnet effect as optimal statistical inference. Psychological Review, 116(4), 752-782. Goldstone, R. (1994). Influences of categorization on perceptual discrimination. Journal of Experimental Psychology: General, 23, 178-200. Goodman, N. D., Frank, M. C., Griffiths, T. L., Tenenbaum, J. B., Battaglia, P. W., & Hamrick, J. B. (2015). Relevant and robust: A response to Marcus and Davis (2013). Psychological Science, 26(4), 539-541. Griffiths, T. L., Chater, N., Norris, D., & Pouget, A. (2012). How the Bayesians got their beliefs (and what those beliefs actually are): Comment on Bowers and Davis (2012). Psychological Bulletin, 138(3), 415-422. Griffiths, T. L., & Tenenbaum, J. B. (2006). Optimal predictions in everyday cognition. Psychological Science, 17(9), 767-773. Hahn, U. (2014). The Bayesian boom: Good thing or bad? Frontiers in Psychology, 5, 765. Hemmer, P., & Steyvers, M. (2009a). Integrating episodic memories and prior knowledge at multiple levels of abstraction. Psychonomic Bulletin & Review, 16(1), 80-87. Hemmer, P., & Steyvers, M. (2009b). A Bayesian account of reconstructive memory. Topics in Cognitive Science, 1, 189-202. Hemmer, P., Tauber, S., & Steyvers, M. (2015). Moving beyond qualitative evaluations of Bayesian models of cognition. Psychonomic Bulletin & Review, 22(3), 614-628. Hertwig, R., Pachur, T., & Kurzenhäuser, S. (2005). Judgments of risk frequencies: Tests of possible cognitive mechanisms. Journal of Experimental Psychology: Learning, Memory, and Cognition, 31(4), 621-642. Hollingworth, H. L. (1910). The central tendency of judgment. The Journal of Philosophy, Psychology and Scientific Methods, 7(17), 461-469. Huttenlocher, J., Hedges, L. V., & Vevea, J. L. (2000). Why do categories affect stimulus judgment? Journal of Experimental Psychology: General, 129, 220-241. John, L. K., Loewenstein, G., & Prelec, D. (2012). Measuring the prevalence of questionable research practices with incentives for truth telling. Psychological Science, 23(5), 524-532. Jones, M., Curran, T., Mozer, M. C., & Wilder, M. H. (2013). Sequential effects in response time reveal learning mechanisms and event representations. Psychological Review, 120(3), 628-666. Jones, M., & Love, B. C. (2011a). Bayesian fundamentalism or enlightenment? On the explanatory status and theoretical contributions of Bayesian models of cognition. Behavioral and Brain Sciences, 34(4), 169-188. Jones, M., & Love, B. C. (2011b). Pinning down the theoretical commitments of Bayesian cognitive models. Behavioral and Brain Sciences, 34(4), 215-231. Lewandowsky, S., Griffiths, T. L., & Kalish, M. L. (2009). The wisdom of individuals: Exploring people's knowledge about everyday events using iterated learning. Cognitive Science, 33(6), 969-998. Loken, E., & Gelman, A. (2017). Measurement error and the replication crisis. Science, 355(6325), 584-585. Marcus, G. F., & Davis, E. (2013). How robust are probabilistic models of higher-level cognition? Psychological Science, 24(12), 2351-2360. Marcus, G. F., & Davis, E. (2015). Still searching for principles: A response to Goodman et al. (2015). Psychological Science, 26(4), 542-544. Moore, D. A., & Healy, P. J. (2008). The trouble with overconfidence. Psychological Review, 115(2), 502–517. Mozer, M. C., Pashler, H., & Homaei, H. (2008). Optimal predictions in everyday cognition: The wisdom of individuals or crowds? Cognitive Science, 32(7), 1133-1147. Norris, D., & McQueen, J. M. (2008). Shortlist B: A Bayesian model of continuous speech recognition. Psychological Review, 115(2), 357-395. Pashler, H., & Harris, C. R. (2012). Is the replicability crisis overblown? Three arguments examined. Perspectives on Psychological Science, 7(6), 531-536. Perfors, A., Tenenbaum, J. B., Griffiths, T. L., & Xu, F. (2011). A tutorial introduction to Bayesian models of cognitive development. Cognition, 120(3), 302-321. Petzold, P., & Haubensak, G. (2004). The influence of category membership of stimuli on sequential effects in magnitude judgment. Perception & Psychophysics, 66(4), 665-678. Petzschner, F. H., Glasauer, S., & Stephan, K. E. (2015). A Bayesian perspective on magnitude estimation. Trends in Cognitive Sciences, 19(5), 285-293. Sailor, K. M., & Antoine, M. (2005). Is memory for stimulus magnitude Bayesian? Memory & Cognition, 33, 840-851. Sampson, R. J., & Raudenbush, S. W. (2004). Seeing disorder: Neighborhood stigma and the social construction of “broken windows”. Social Psychology Quarterly, 67(4), 319-342. Savage, L.J. (1954). The Foundations of Statistics. Wiley, New York. Reprinted in 1972 by Dover, New York. Siegler, R. S. (1987). The perils of averaging data over strategies: An example from children's addition. Journal of Experimental Psychology: General, 116(3), 250-264. Simmons, J. P., Nelson, L. D., & Simonsohn, U. (2011). False-positive psychology: Undisclosed flexibility in data collection and analysis allows presenting anything as significant. Psychological Science, 22(11), 1359-1366. Spencer, J. P., & Hund, A. M. (2002). Prototypes and particulars: Geometric and experience-dependent spatial categories. Journal of Experimental Psychology: General, 131(1), 16-37. Steegen, S., Tuerlinckx, F., Gelman, A., & Vanpaemel, W. (2016). Increasing transparency through a multiverse analysis. Perspectives on Psychological Science, 11(5), 702-712. Stewart, N., Brown, G. D., & Chater, N. (2002). Sequence effects in categorization of simple perceptual stimuli. Journal of Experimental Psychology: Learning, Memory, and Cognition, 28(1), 3-11. Tauber, S., Navarro, D. J., Perfors, A., & Steyvers, M. (2017). Bayesian models of cognition revisited: Setting optimality aside and letting data drive psychological theory. Psychological Review, 124(4), 410-441. Tenenbaum, J. B., Griffiths, T. L., & Kemp, C. (2006). Theory-based Bayesian models of inductive learning and reasoning. Trends in Cognitive Sciences, 10(7), 309-318. Wagenmakers, E. J., Wetzels, R., Borsboom, D., & Maas, H. L. J. (2011). Why psychologists must change the way they analyze their data: The case of psi. Journal of Personality and Social Psychology, 100(3), 426-432. Wicherts, J. M., Veldkamp, C. L., Augusteijn, H. E., Bakker, M., van Aert, R. C., & Van Assen, M. A. (2016). Degrees of freedom in planning, running, analyzing, and reporting psychological studies: A checklist to avoid p-hacking. Frontiers in Psychology, 7, 1832. Wilder, M., Jones, M., & Mozer, M. C. (2009). Sequential effects reflect parallel learning of multiple environmental regularities. Advances in Neural Information Processing Systems, 22, 2053-2061. Xu, J., & Griffiths, T. L. (2010). A rational analysis of the effects of memory biases on serial reproduction. Cognitive Psychology, 60(2), 107-126. Yu, A. J., & Cohen, J. D. (2009). Sequential effects: Superstition or rational behavior? Advances in Neural Information Processing Systems, 21, 1873-1880. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/81254 |
Available Versions of this Item
-
Category effects on stimulus estimation: Shifting and skewed frequency distributions - A reexamination. (deposited 07 Jan 2017 08:23)
- Category effects on stimulus estimation: Shifting and skewed frequency distributions - A reexamination. (deposited 09 Sep 2017 04:53) [Currently Displayed]