Besner, Manfred (2018): The weighted Shapley support levels values.
Preview |
PDF
MPRA_paper_87617.pdf Download (411kB) | Preview |
Abstract
This paper presents a new class of weighted values for level structures. The new values, called weighted Shapley support levels values, extend the weighted Shapley values to level structures and contain the Shapley levels value (Winter, 1989) as a special case. Since a level structure with only two levels coincides with a coalition structure we obtain, as a side effect, also new axiomatizations of weighted coalition structure values, presented in Levy and McLean (1989).
Item Type: | MPRA Paper |
---|---|
Original Title: | The weighted Shapley support levels values |
Language: | English |
Keywords: | Cooperative game · Level structure · (Weighted) Shapley (levels) value · Weighted proportionality · Harsanyi set · Dividends |
Subjects: | C - Mathematical and Quantitative Methods > C7 - Game Theory and Bargaining Theory > C70 - General C - Mathematical and Quantitative Methods > C7 - Game Theory and Bargaining Theory > C71 - Cooperative Games |
Item ID: | 87617 |
Depositing User: | Manfred Besner |
Date Deposited: | 28 Jun 2018 10:06 |
Last Modified: | 12 Oct 2019 16:40 |
References: | Alvarez-Mozos, M., van den Brink, R., van der Laan, G., & Tejada, O. (2017). From hierarchies to levels: new solutions for games with hierarchical structure. International Journal of Game Theory, 1–25. Aumann, R.J., Drèze, J., 1974. Cooperative games with coalition structures. International Journal of Game Theory 3, 217–237. Besner, M. (2016). Lösungskonzepte kooperativer Spiele mit Koalitionsstrukturen, Master’s thesis, Fern-Universität Hagen (Germany). Besner, M. (2017). Weighted Shapley levels values. Working Paper. Calvo, E., Lasaga, J. J., & Winter, E. (1996). The principle of balanced contributions and hierarchies of cooperation, Mathematical Social Sciences, 31(3), 171–182. Casajus, A., & Huettner, F. (2008). Marginality is equivalent to coalitional strategic equivalence. Working paper. Casajus, A. (2010). Another characterization of the Owen value without the additivity axiom. Theory and decision, 69(4), 523–536. Chun, Y. (1989). A new axiomatization of the Shapley value. Games and Economic Behavior 1(2), 119–130. Derks, J., Haller, H., & Peters, H. (2000). The selectope for cooperative games. International Journal of Game Theory, 29(1), 23–38. Dragan, I. C. (1992). Multiweighted Shapley values and random order values. University of Texas at Arlington. Gómez-Rúa, M., & Vidal-Puga, J. (2011). Balanced per capita contributions and level structure of cooperation. Top, 19(1), 167–176. Hammer, P. L., Peled, U. N., & Sorensen, S. (1977). Pseudo-boolean functions and game theory. I. Core elements and Shapley value. Cahiers du CERO, 19, 159–176. Harsanyi, J. C. (1959). A bargaining model for cooperative n-person games. In: A. W. Tucker & R. D. Luce (Eds.), Contributions to the theory of games IV (325–355). Princeton NJ: Princeton University Press. Kalai, E., & Samet, D. (1987). On weighted Shapley values. International Journal of Game Theory 16(3), 205–222. Khmelnitskaya, A. B., & Yanovskaya, E. B. (2007). Owen coalitional value without additivity axiom. Mathematical Methods of Operations Research, 66(2), 255–261. Levy, A., & Mclean, R. P. (1989). Weighted coalition structure values. Games and Economic Behavior, 1(3), 234–249. McLean, R. P. (1991). Random order coalition structure values. International Journal of Game Theory, 20(2), 109–127. Nowak, A. S., & Radzik, T. (1995). On axiomatizations of the weighted Shapley values. Games and Economic Behavior, 8(2), 389–405. Owen, G. (1977). Values of games with a priori unions. In Essays in Mathematical Economics and Game Theory, Springer, Berlin Heidelberg, 76–88. Shapley, L. S. (1953a). Additive and non-additive set functions. Princeton University. Shapley, L. S. (1953b). A value for n-person games. H. W. Kuhn/A. W. Tucker (eds.), Contributions to the Theory of Games, Vol. 2, Princeton University Press, Princeton, pp. 307–317. Vasil’ev, V. A. (1978). Support function of the core of a convex game. Optimizacija Vyp, 21, 30-35. Vidal-Puga, J. (2012). The Harsanyi paradox and the ”right to talk” in bargaining among coalitions. Mathematical Social Sciences, 64(3), 214–224. Winter, E. (1989). A value for cooperative games with levels structure of cooperation. International Journal of Game Theory, 18(2), 227–240. Young, H. P. (1985). Monotonic solutions of Cooperative Games. International Journal of Game Theory, 14(2), 65–72. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/87617 |
Available Versions of this Item
- The weighted Shapley support levels values. (deposited 28 Jun 2018 10:06) [Currently Displayed]