Gómez-Rúa, María and Vidal-Puga, Juan (2008): The axiomatic approach to three values in games with coalition structure.
Preview |
PDF
MPRA_paper_8904.pdf Download (319kB) | Preview |
Abstract
We study three values for transferable utility games with coalition structure, including the Owen coalitional value and two weighted versions with weights given by the size of the coalitions. We provide three axiomatic characterizations using the properties of Efficiency, Linearity, Independence of Null Coalitions, and Coordination, with two versions of Balanced Contributions inside a Coalition and Weighted Sharing in Unanimity Games, respectively.
Item Type: | MPRA Paper |
---|---|
Original Title: | The axiomatic approach to three values in games with coalition structure |
Language: | English |
Keywords: | coalition structure; coalitional value |
Subjects: | C - Mathematical and Quantitative Methods > C7 - Game Theory and Bargaining Theory |
Item ID: | 8904 |
Depositing User: | Juan Vidal-Puga |
Date Deposited: | 30 May 2008 06:56 |
Last Modified: | 29 Sep 2019 15:18 |
References: | Albizuri M.J. (2008) \QTR{em}{Axiomatizations of the Owen value without efficiency}. Mathematical Social Sciencies \QTR{bf}{55}, 78-89. Albizuri M.J. and Zarzuelo J.M. (2004) \QTR{it}{On coalitional semivalues}. Games and Economic Behavior \QTR{bf}{49}, 221-243. Alonso-Meijide J.M., Carreras F. and Puente M.A. (2007) \QTR{it}{Axiomatic characterizations of the symmetric coalitional binomial semivalues}. Discrete Applied Mathematics \QTR{bf}{155}(17), 2282-2293. Alonso-Meijide J.M. and Fiestras-Janeiro M.G. (2002) \QTR{em}{Modification of the Banzhaf value for games with a coalition structure}. Annals of Operations Research \QTR{bf}{109}, 213-227. Amer R. and Carreras F. (1995) \QTR{em}{Cooperation indices and coalitional value}. TOP \QTR{bf}{3}(1), 117-135. Amer R., Carreras F. and Gim\'{e}nez J.M. (2002) \QTR{em}{The modified Banzhaf value for games with a coalition structure: an axiomatic characterization}. Mathematical Social Sciencies \QTR{bf}{43}, 45-54. Aumann R.J. and Dr\`{e}ze J.H. (1974) \QTR{it}{Cooperative games with coalition structure}. International Journal of Game Theory \QTR{bf}{3}, 217-237. Banzhaf J.F. (1965) \QTR{em}{Weighted voting doesn't work: A mathematical analysis}. Rutgers Law Review \QTR{bf}{19}, 317-343. Berganti\~{n}os G., Casas B., Fiestras-Janeiro G. and Vidal-Puga J. (2007) \QTR{it}{A focal-point solution for bargaining problems with coalition structure}. Mathematical Social Sciences \QTR{bf}{54}(1), 35-58. Berganti\~{n}os G. and Vidal-Puga J. (2005) \QTR{it}{The consistent coalitional value}. Mathematics of Operations Research \QTR{bf}{30}(4), 832-851. Carreras F. and Puente M.A. (2006) \QTR{em}{A parametric family of mixed coalitional values}. Recent Advances in Optimization, Lecture Notes in Economics and Mathematical Systems. Ed. by A. Seeger. Springer, 323-339. Calvo E., Lasaga J. and Winter E. (1996)\QTR{it}{\ The principle of balanced contributions and hierarchies of cooperation}. Mathematical Social Sciences \QTR{bf}{31}, 171-182. Calvo E. and Santos J.C. (2000) \QTR{em}{A value for multichoice games}. Mathematical Social Sciences \QTR{bf}{40}, 341-354. Calvo E. and Santos J.C. (2006) \QTR{em}{The serial property and restricted balanced contributions in discrete cost sharing problems}. Top \QTR{bf}{14}(2), 343-353. Chae S. and Heidhues P. (2004) \QTR{it}{A group bargaining solution}. Mathematical Social Sciences \QTR{bf}{48}(1), 37-53. Deegan J. and Packel E.W. (1978) \QTR{em}{A new index of power for simple n-person games}. International Journal of Game Theory \QTR{bf}{7}, 113-123. Hamiache G. (1999) \QTR{it}{A new axiomatization of the Owen value for games with coalition structures}. Mathematical Social Sciencies \QTR{bf}{37}, 281-305. Hamiache G. (2001) \QTR{it}{The Owen value values friendship}. International Journal of Game Theory \QTR{bf}{29}, 517-532. Harsanyi J.C. (1977) \QTR{it}{Rational behavior and bargaining equilibrium in games and social situations. }Cambridge University Press. Hart S. and Kurz M. (1983) \QTR{it}{Endogenous formation of coalitions}. Econometrica \QTR{bf}{51}(4), 1047-1064. Kalai E. and Samet D. (1987) \QTR{em}{On weighted Shapley values}. International Journal of Game Theory \QTR{bf}{16}, 205-222. Kalai E. and Samet D. (1988) \QTR{em}{Weighted Shapley values}. The Shapley value: Essays in honor of L. Shapley. Ed. by A. Roth. Cambridge. Cambridge University Press, 83-99. Kalandrakis (2006) \QTR{em}{Proposal rights and political power}. American Journal of Political Science \QTR{bf}{50}(2), 441-448. Levy A. and McLean R.P. (1989) \QTR{it}{Weighted coalition structure values}. Games and Economic Behavior \QTR{bf}{1}, 234-249. Malawski M. (2004) \QTR{em}{``Counting'' power indices for games with a priori unions}. Theory and Decision \QTR{bf}{56}, 125-140. M\l odak A. (2003) \QTR{em}{Three additive solutions of cooperative games with a priori unions}. Applicationes Mathematicae \QTR{bf}{30}, 69-87. Moulin H. (1995) \QTR{em}{On Additive Methods to Share Joint Costs}. The Japanese Economic Review \QTR{bf}{46}, 303-332. Myerson R.B. (1977) \QTR{it}{Graphs and cooperation in games}. Mathematics of Operations Research \QTR{bf}{2}, 225-229. Myerson R.B. (1980)\QTR{it}{\ Conference structures and fair allocation rules}. International Journal of Game Theory \QTR{bf}{9}, 169-182. Owen G. (1975) \QTR{em}{Multilinear extensions and the Banzhaf value}. Naval Research Logistics Quarterly \QTR{bf}{22}, 741-750. Owen G. (1977) \QTR{it}{Values of games with a priori unions}. Essays in mathematical economics and game theory. Ed. by R. Henn R. and O. Moeschlin. Berlin. Springer-Verlag, 76-88. Owen G. (1978) \QTR{em}{Characterization of the Banzhaf-Coleman index}. SIAM Journal on Applied Mathematics \QTR{bf}{35}, 315-327. Peleg B. (1989) \QTR{em}{Introduction to the theory of cooperative games} (Chapter 8). The Shapley value. RM 88 Center for Research in Mathematical Economics and Game Theory. The Hebrew University. Jerusalem. Israel. Puente M.A. (2000) \QTR{em}{Aportaciones a la representabilidad de juegos simples y al c\'{a}lculo de soluciones de esta clase de juegos} (in Spanish). Ph.D. Thesis. Polytechnic University of Catalonia, Spain. Ruiz L.M., Valenciano F. and Zarzuelo J.M. (1996) \QTR{em}{The least square prenucleolus and the least square nucleolus. Two values for TU games based on the excess vector}. International Journal of Game Theory \QTR{bf}{25}, 113-134. Shapley L.S. (1953a) \QTR{em}{Additive and non-additive set functions}. Ph.D. Thesis. Princeton University. Shapley L.S. (1953b) \QTR{it}{A value for n-person games}. Contributions to the Theory of Games II. Ed. by H.W. Kuhn and A.W. Tucker. Princeton NJ. Princeton University Press, 307-317. V\'{a}zquez-Brage M., Van den Nouweland A. and Garc\'{i}a-Jurado I. (1997) \QTR{it}{Owen's coalitional value and aircraft landing fees}. Mathematical Social Sciences \QTR{bf}{34}, 273-286. Vidal-Puga J. (2006) \QTR{it}{The Harsanyi paradox and the ``right to talk'' in bargaining among coalitions}. EconWPA Working paper number 0501005. Available at http://ideas.repec.org/p/wpa/wuwpga/0501005.html. Winter E. (1989) \QTR{it}{A value for cooperative games with level structure of cooperation}. International Journal or Game Theory \QTR{bf}{18}, 227-240. Winter E. (1992)\QTR{it}{\ The consistency and potential for values of games with coalition structure}. Games and Economic Behavior \QTR{bf}{4}, 132-144. Young H.P. (1985) \QTR{it}{Monotonic solutions of cooperative games}. International Journal of Game Theory \QTR{bf}{14}, 65-72. Zhang X. (1995) \QTR{em}{The pure bargaining problem among coalitions}. Asia-Pacific Journal of Operational Research \QTR{bf}{12}, 1-15. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/8904 |