Ben Amer-Allam, Sara and Münster, Marie and Petrović, Stefan (2017): Scenarios for sustainable heat supply and heat savings in municipalities - The case of Helsingor, Denmark. Published in: Energy , Vol. 137, (15 October 2017): pp. 1252-1263.
This is the latest version of this item.
PDF
MPRA_paper_93200.pdf Download (819kB) |
Abstract
Local climate action is not only a domain of large cities, but also smaller urban areas that increasingly address climate change mitigation in their policy. The Danish municipality of Helsingør can achieve a substantial CO2 emissions reduction by transforming its heat supply and deploying heat savings. In this paper, we model the heating system of Helsingør, assess it from a simple socio- and private-economic perspective, develop future scenarios, and conduct an iterative process to derive a cost-optimal mix between district heating, individual heating and heat savings. The results show that in 2030 it is cost-optimal to reduce the heating demand by 20-39% by implementing heat savings, to deploy 32%-41% of district heating and to reduce heating-related CO2 emissions by up to 95% in comparison to current emissions. In 2050, the cost-optimal share of district heating in Helsingør increases to between 38-44%. The resulting average heating costs and CO2 emissions are found to be sensitive to biomass and electricity price. Although the findings of the study are mainly applicable for Helsingør, the combined use of the Least Cost Tool and modelling with energyPRO is useful in planning of heating and/or cooling supply for different demand configurations, geographical region and scale.
Item Type: | MPRA Paper |
---|---|
Original Title: | Scenarios for sustainable heat supply and heat savings in municipalities - The case of Helsingor, Denmark |
Language: | English |
Keywords: | heat savings; district heating; individual heating; CO2 emission reduction; Least Cost Tool; energyPRO |
Subjects: | C - Mathematical and Quantitative Methods > C6 - Mathematical Methods ; Programming Models ; Mathematical and Simulation Modeling > C60 - General |
Item ID: | 93200 |
Depositing User: | Sara Ben Amer |
Date Deposited: | 10 Apr 2019 13:50 |
Last Modified: | 29 Sep 2019 21:36 |
References: | European Technology Platform on Renewable Heating and Cooling. 2020-2030-2050 Common Vision for the Renewable Heating & Cooling sector in Europe. 2011. doi:10.2788/20474. Chittum A, Østergaard PA. How Danish communal heat planning empowers municipalities and benefits individual consumers. Energy Policy 2014;74:465–74. doi:10.1016/j.enpol.2014.08.001. Danmarks Statistik. Statistikbanken (Danish statistics) 2016. http://www.dst.dk/da/Statistik/statistikbanken (accessed May 1, 2017). Helsingør Kommune. Helsingør Kommunes Klimapolitik (Climate policy of Helsingør municipality) 2010:1–12. Danish Energy Agency. Strategisk energiplanlægning i kommunerne. Kortlægning og nøgletal. Vejledning i kortlægningsmetoder og datafangst (Strategic energy planning in municipalities. Mapping and key numbers. Guide in mapping methods and data collection). 2012. Bertoldi P, Bornas Cayuela D, Monni S, Piers De Raveschoot R. How to develop a Sustainable Energy Action Plan (SEAP) - Guidebook. 2010. doi:10.2790/20638. Kona A, Melica G, Calvete SR, Zancanella P, Iancu A, Saheb Y et al. The Covenant of Mayors in Figures and Performance Indicators : 6-year Assessment. 2015. doi:10.2790/774700. Keirstead J, Jennings M, Sivakumar A. A review of urban energy system models: Approaches, challenges and opportunities. Renew Sustain Energy Rev 2012;16:3847–66. doi:10.1016/j.rser.2012.02.047. Calvillo CF, Sánchez-Miralles A, Villar J. Energy management and planning in smart cities. Renew Sustain Energy Rev 2016;55:273–87. doi:10.1016/j.rser.2015.10.133. Stennikov VA, Iakimetc EE. Optimal planning of heat supply systems in urban areas. Energy 2016;110:157–65. doi:10.1016/j.energy.2016.02.060. Karlsson KB, Petrović SN, Næraa R. Heat supply planning for the ecological housing community Munksøgård. Energy 2016. doi:10.1016/j.energy.2016.08.064. Morvaj B, Evins R, Carmeliet J. Optimising urban energy systems: Simultaneous system sizing, operation and district heating network layout. Energy 2016;116:619–36. doi:10.1016/j.energy.2016.09.139. Harrestrup M, Svendsen S. Heat planning for fossil-fuel-free district heating areas with extensive end-use heat savings: A case study of the Copenhagen district heating area in Denmark. Energy Policy 2014;68:294–305. doi:10.1016/j.enpol.2014.01.031. Bach B, Werling J, Ommen T, Münster M, Morales JM, Elmegaard B. Integration of large-scale heat pumps in the district heating systems of Greater Copenhagen. Energy 2016;107:321–34. doi:10.1016/j.energy.2016.04.029. Merkel E, McKenna R, Fehrenbach D, Fichtner W. A model-based assessment of climate and energy targets for the German residential heat system. J Clean Prod 2017;142:3151–73. doi:10.1016/j.jclepro.2016.10.153. Åberg M. Investigating the impact of heat demand reductions on Swedish district heating production using a set of typical system models. Appl Energy 2014;118:246–57. doi:10.1016/j.apenergy.2013.11.077. Zvingilaite E. Modelling energy savings in the Danish building sector combined with internalisation of health related externalities in a heat and power system optimisation model. Energy Policy 2013;55:57–72. doi:10.1016/j.enpol.2012.09.056. Hansen K, Connolly D, Drysdale D, Thellufsen JZ. Heat Roadmap Europe: Identifying the balance between saving heat and supplying heat. Energy 2016;115:1663–71. doi:10.1016/j.energy.2016.06.033. Petrović S, Karlsson K. Ringkøbing-Skjern energy atlas for analysis of heat saving potentials in building stock. Energy 2016;110:166–77. doi:10.1016/j.energy.2016.04.046. Nielsen S, Möller B. GIS based analysis of future district heating potential in Denmark. Energy 2013;57:458–68. doi:10.1016/j.energy.2013.05.041. Sperling K, Möller B. End-use energy savings and district heating expansion in a local renewable energy system – A short-term perspective. Appl Energy 2012;92:831–42. doi:10.1016/j.apenergy.2011.08.040. Østergaard PA. Comparing electricity, heat and biogas storages’ impacts on renewable energy integration. Energy 2012;37:255–62. doi:10.1016/j.energy.2011.11.039. Streckienė G, Martinaitis V, Andersen AN, Katz J. Feasibility of CHP-plants with thermal stores in the German spot market. Appl Energy 2009;86:2308–16. doi:10.1016/j.apenergy.2009.03.023. Fragaki A, Andersen AN. Conditions for aggregation of CHP plants in the UK electricity market and exploration of plant size. Appl Energy 2011;88:3930–40. doi:10.1016/j.apenergy.2011.04.004. Sorknæs P, Lund H, Andersen AN. Future power market and sustainable energy solutions – The treatment of uncertainties in the daily operation of combined heat and power plants. Appl Energy 2015;144:129–38. doi:10.1016/j.apenergy.2015.02.041. Sorknæs P, Lund H, Andersen AN, Ritter P. Small-scale combined heat and power as a balancing reserve for wind – The case of participation in the German secondary control reserve. Int J Sustain Energy Plan Manag 2015;4:31–42. Kiss VM. Modelling the energy system of Pécs – The first step towards a sustainable city. Energy 2015;80:373–87. doi:10.1016/j.energy.2014.11.079. progRESs HEAT. EU Horizon 2020 project progRESs HEAT n.d. http://www.progressheat.eu/ (accessed May 4, 2017). Nielsen S, Möller B. Excess heat production of future net zero energy buildings within district heating areas in Denmark. Energy 2012;48:23–31. doi:10.1016/j.energy.2012.04.012. Ea Energianalyse. Lokale vedvarende energiressourcer. Potentialevurdering til “Energi på tværs” (Local renewable energy sources. Potential assesment for “Energi på tværs” project). 2015. Lund R, Persson U. Mapping of potential heat sources for heat pumps for district heating in Denmark. Energy 2016;110:129–38. doi:10.1016/j.energy.2015.12.127. Danish Energy Agency. Standardfaktorer for brændværdier og CO2 emissioner (Standard factors for calorific value and CO2 emissions) 2015:1–3. Danish Energy Agency, Energinet.dk. Technology data for energy plants. Generation of electricity and district heating, energy storage and energy carrier generation and conversion (updated 2015). 2012. doi:ISBN: 978-87-7844-931-3. Danish Energy Agency, Energinet.dk. Technology data for energy plants. Individual heating plants and energy transport 2012. Energinet.dk. Analyseforudsætninger 2015-2035 (Analysis assumptions for 2015-2035) 2015:1–25. Eurostat. Energy price statistics 2013. http://ec.europa.eu/eurostat/statistics-explained/index.php/Energy_price_statistics (accessed November 10, 2016). European Commission. EU Reference Scenario 2016 2016:1–27. Danish Energy Agency. Samfundsøkonomiske analysemetoder (Socio-economic methods of analysis) n.d. https://ens.dk/service/fremskrivninger-analyser-modeller/samfundsoekonomiske-analysemetoder (accessed April 7, 2017). Drupp, MA, Freeman, MC, Groom, B, Nesje F. Discounting Disentangled. Memorandum No 20/2015, Department of Economics, University of Oslo. 2015. EY. Kortlægning af kommunale garantiprovisioner for låntagning i forsyningsselskaber (Mapping of municipal guarantee commissions for borrowing by utilities). 2016. Dansk Energi. Elforsyningens nettariffer & priser pr. 1 januar 2016 (Tariffs and prices for electricity supply as of 1st January 2016). 2016. Energinet.dk. Aktuelle tariffer og gebyrer (Current tariffs and fees) 2016. Skat.dk. Afgifter - Energi. (Taxes - energy) 2016. https://www.skat.dk/SKAT.aspx?oId=1921342&chk=214126 (accessed May 1, 2017). Aftale mellem regeringen (Socialdemokraterne, Det Radikale Venstre, Socialistisk Folkeparti) og Venstre, Dansk Folkeparti, Enhedslisten og Det Konservative Folkeparti om den danske energipolitik 2012-2020 [Agreement on the Danish energy policy 2012-2020] 2012:1–16. Invert/EE-Lab. 2015 n.d. http://www.invert.at/ (accessed April 6, 2017). Müller A. Energy Demand Assessment for Space Conditioning and Domestic Hot Water: A Case Study for the Austrian Building Stock (PhD Dissertation) 2015:285. http://www.invert.at/Dateien/Dissertation_AndreasM.pdf. EMD International. EMD International - energyPRO n.d. http://www.emd.dk/energypro/ (accessed April 6, 2017). EMD International. energyPRO User’s Guide 2016:1–258. http://emd.dk/energyPRO/Tutorials and How To Guides/energyPROHlpEng-4.4 Apr.16.pdf. Sorknæs P. Bidding and operation strategies in future energy markets: The transition of small district heating plants into market-based smart energy systems (PhD Thesis) 2015:1–185. Persson U, Werner S. Heat distribution and the future competitiveness of district heating. Appl Energy 2011;88:568–76. doi:10.1016/j.apenergy.2010.09.020. Danish Ministry of Climate Energy and Utilities. Dansk energi-, forsynings- og klimapolitik (Danish energy, utilities and climate policy) 2016. Grundahl L, Nielsen S, Möller B. Comparison of district heating expansion potential based on consumer-economy or socio-economy. Energy 2016;115:1771–8. doi:10.1016/j.energy.2016.05.094. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/93200 |
Available Versions of this Item
-
Scenarios for sustainable heat supply in cities – case of Helsingor, Denmark. (deposited 09 Apr 2019 16:11)
- Scenarios for sustainable heat supply and heat savings in municipalities - The case of Helsingor, Denmark. (deposited 10 Apr 2019 13:50) [Currently Displayed]