Lowenthal-Quastler, Sonia K. and Garcia-Fronti, Javier and Casparri, María Teresa (2006): Elección de planes de salud mediante técnicas de clasificación fuzzy (Health plans selection using fuzzy classification techniques).
Preview |
PDF
MPRA_paper_958.pdf Download (188kB) | Preview |
Abstract
In the present difficult economic situation in Argentina, most companies are making efforts in implementing cost reduction strategies. This has an impact in the way these companies choose the health coverage for their employees, specially seeking to minimize the cost and at the same time to provide the maximum satisfaction of the needs of the employees and their families.
In the years preceding this crisis, since there was no pressure on the Human Resources Area to focus on minimizing costs, the selection of the health coverage was made according to the criteria that were determined by this Area and the sales executive of the health company. The price was then calculated by the health company, and presented to the customer, which could accept it or ask for another alternative. In this last case, a new plan was selected, and a new price had to be calculated. This process continued until an agreement was reached. Therefore, from the health company’s point of view, the objective of its models was to determine an adequate, fair and competitive price given the employee group and the chosen health coverage.
The present paper introduces a decision model based on Fuzzy techniques, that allows to determine the better health plan according to the priorities of the customer company and the maximum cost it is prepared to assume. The company puts forward its coverage requirements with certain priorities. These requirements include the list of health services providers (hospitalization institutions, health professionals, medical exams institutions, etc), and the coinsurance percentages or amounts for each health service (amounts in charge of the employees).
In the first place, the model assumptions are presented: the health services groupings such as Medical Visits, Pathology Exams and Surgical Hospitalization, the different coverage options such as a fixed coinsurance of $5 for Medical Visits and a 50% discount in prescribed medicines, the health services costs that will depend on the contracts with the providers, and other additional assumptions. Then, the model method and the information that the customer has to provide are described. This information will be the input data for the model.
Thirdly, a ranking of the plans according to the customer preferences and priorities is performed. The preferences are related to the types of coverage for each group of health services while the priorities are the weights that the company assigns to each of these groups within the health plan. The preferences and priorities will be described by triangle fuzzy numbers, and for each plan, an index is calculated based on them, so the index will also be a triangle fuzzy number (TFN). In order to carry out the plans classification, the criterion of the Area of the TFN on the vertical axis is applied, the higher the Area, the better the plan for the customer.
Next we explain the pricing structure used to calculate the cost of the plans one by one, starting with the first one of the ranking, and continuing up to the first plan that has a cost equal to or lower than the maximum price established by the customer company. This plan is the optimal. The pricing structure is based on the age-gender distribution of the employee group, statistical information on frequency in health claims and the expected cost of those claims for the time period that is being priced. Given a health plan, for each group of health services, we will have a frequency, a cost, and a fixed or percentage coinsurance. With this information we can calculate the expected cost per member per month, and adding up all these costs for all the groups of services, and including other pricing components (commissions, acquisition and maintenance expenses, security and profit margin), we obtain the total price of the plan, that is compared to the maximum set by the customer.
Finally, conclusions are presented about the optimal plan chosen in the case that is developed. The plan characteristics are analyzed and compared to the preferences and priorities established by the company. There are also conclusions about the model, its advantages and the aspects that could be improved.
Resumen
En el contexto de la actual crisis económica en Argentina la mayoría de las empresas concentran esfuerzos en políticas de reducción de costos. Esto produce un impacto en la forma en que las compañías eligen la cobertura privada de salud para sus empleados buscando con especial énfasis minimizar los costos dando máxima satisfacción a las necesidades de los mismos.
Con anterioridad a esta crisis, no existiendo presión sobre la gerencia de recursos humanos de una política corporativa de reducción de costos, la elección de la cobertura privada más adecuada se realizaba de acuerdo a los criterios acordados entre dicha área y el ejecutivo de la cuenta de la compañía de medicina prepaga, determinando luego esta última el costo de la cobertura. Si la empresa no estaba conforme con el precio, se reducían los beneficios o se elegía un nuevo plan. En ambos casos, era necesario realizar una nueva cotización. Este proceso se repetía hasta lograr un acuerdo con la empresa. Por lo tanto, desde el punto de vista de la compañía de medicina prepaga, el objetivo de los modelos tratados por la bibliografía era, dado el grupo de empleados y un plan determinado, calcular el precio objetivo de modo de obtener una tarifa adecuada, equitativa y competitiva.
El presente trabajo expone un modelo de decisión basado en técnicas Fuzzy que permite determinar cuál es el mejor plan de salud según las prioridades de la empresa y el costo máximo que está dispuesta a asumir. La empresa plantea requisitos de cobertura con ciertas prioridades. Estos requisitos de cobertura abarcan la cartilla (prestadores incluidos y calidad de sanatorios, tipo de habitación), y copagos y coseguros (importes fijos o porcentajes del costo a cargo de los empleados).
En primer lugar se plantearán los supuestos del modelo a utilizar: las categorías de servicios de salud utilizadas, como "Consultas", "Exámenes" o "Internación Clínica", las diferentes opciones de cobertura, como "Copagos de $5 en Consultas" o "50% de descuento en Medicamentos", los costos de las prestaciones que dependen de la modalidad de contratación con los prestadores y otros supuestos adicionales. Seguidamente, se establece la información que debe proporcionar la empresa que conformará los datos de entrada del modelo, y brevemente se describe el método para resolver el problema.
En tercer lugar, se realiza un ranking de los planes de acuerdo a las preferencias y prioridades de la empresa. Las preferencias se refieren a cada tipo de cobertura dentro de cada servicio de salud, mientras que las prioridades son la importancia que la empresa le asigna a cada categoría de servicio dentro del plan de salud. Para cada plan se calculará un índice basado en dichas preferencias y prioridades. Estas últimas estarán descriptas por números borrosos triangulares, con lo cual el índice también será un número borroso triangular (NBT). Para llevar a cabo la clasificación de los planes se aplicarán técnicas de clasificación Fuzzy: utilizaremos el criterio del área del NBT sobre el eje de las ordenadas. Cuanto mayor sea esta área, más alejado estará el NBT del eje de ordenadas, con lo cual, un plan con mayor área será mejor para la empresa Luego se explica brevemente la estructura de cotización utilizada para costear los planes en el orden establecido por el ranking hasta llegar al primer plan factible de acuerdo al precio máximo indicado por la empresa. Así quedará determinado el plan óptimo. La cotización se basa en la distribución etárea del grupo costeado, en la información estadística sobre utilización con la que cuenta la compañía de medicina prepaga, y en el costo esperado de los servicios para el período costeado.
Finalmente, se extraen conclusiones acerca del plan óptimo elegido en el caso particular tratado, analizando las características de dicho plan en comparación con las preferencias y prioridades de la empresa, y en general acerca del modelo aplicado, detallando sus ventajas y los aspectos a mejorar.
Item Type: | MPRA Paper |
---|---|
Institution: | Universidad de Buenos Aires |
Original Title: | Elección de planes de salud mediante técnicas de clasificación fuzzy (Health plans selection using fuzzy classification techniques) |
Language: | Spanish |
Keywords: | Salud – Clasificación Fuzzy – Distancia Fuzzy Health – Fuzzy Classification – Fuzzy Distance |
Subjects: | I - Health, Education, and Welfare > I1 - Health > I11 - Analysis of Health Care Markets |
Item ID: | 958 |
Depositing User: | Javier Garcia-Fronti |
Date Deposited: | 29 Nov 2006 |
Last Modified: | 07 Oct 2019 14:36 |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/958 |