Aizawa, Hiroki and Ikeda, Kiyohiro and Osawa, Minoru and Gaspar, José M. (2019): Break and sustain bifurcations of S_N-invariant equidistant economy.
This is the latest version of this item.
Preview |
PDF
MPRA_paper_97654.pdf Download (427kB) | Preview |
Abstract
This paper aims at the elucidation of the bifurcation mechanism of an equidistant economy in Economic Geography. An attention is paid to the existence of invariant solutions that retain their spatial patterns when the bifurcation parameter changes. Theoretical results on symmetrybreaking bifurcation of the symmetric group SN, which describes the symmetry of this economy, is combined with the mechanism of sustain bifurcation of invariant patterns that is inherent to the economy. The stability of bifurcating branches is investigated theoretically to demonstrate that most of them are asymptotically unstable. Among a plethora of theoretically possible spatial patterns, those which actually become stable for spatial economic models are investigated numerically. The solution curves of the economy are shown to display a complicated mesh-like structure, which looks like threads of warp and weft.
Item Type: | MPRA Paper |
---|---|
Original Title: | Break and sustain bifurcations of S_N-invariant equidistant economy |
English Title: | Break and sustain bifurcations of S_N-invariant equidistant economy |
Language: | English |
Keywords: | Bifurcation; equidistant economy; group-theoretic bifurcation theory, invariant pattern, replicator dynamics, spatial economic model, stability |
Subjects: | R - Urban, Rural, Regional, Real Estate, and Transportation Economics > R1 - General Regional Economics > R12 - Size and Spatial Distributions of Regional Economic Activity |
Item ID: | 97761 |
Depositing User: | Hiroki Aizawa |
Date Deposited: | 23 Dec 2019 12:10 |
Last Modified: | 23 Dec 2019 12:10 |
References: | Baldwin, R., Forslid, R., Martin, P., Ottaviano, G., & Robert-Nicoud, F. [2003] Economic Geography and Public Policy (Princeton University Press, Princeton). Castro, S. B. S. D., Correia-da-Silva, J., & Mossay, P. [2012] The core-periphery model with three regions and more, Papers Regional Sci. 91 (2), 401--418. Commendatore, P., Kubin, I. & Sushko, I. [2015] Typical bifurcation scenario in a three region identical new economic geography model, Mathematics and Computers in Simulation 108, 63 -- 80. Elmhirst, T. [2004] S_N-equivariant symmetry-breaking bifurcations, International J. Bifurcation and Chaos 14(3), 1017--1036. Forslid, R. & Ottaviano, G. I. P. [2003] An analytically solvable core-periphery model, J. Econ. Geography 3, 229--340. Fujita, M., Krugman, P. & Venables, A. J. [1999] The Spatial Economy(MIT Press, Cambridge). Gaspar, J. M., Castro, S. B. S. D., & Correia-da-Silva, J. [2018] Agglomeration patterns in a multi-regional economy without income effects, Economic Theory 66(4), 863--899. Gaspar, J. M., Castro, S. B. S. D., & Correia-da-Silva, J. [2019a] The Footloose Entrepreneur model with a finite number of equidistant regions, International J. Economic Theory, 1-27, forthcoming. Gaspar, J. M., Ikeda, K., & Onda, M. [2019b] Global bifurcation mechanism and local stability of identical and equidistant regions, MPRA Paper No. 95013. Golubitsky, M. & Stewart, I. [2002] The Symmetry Perspective (Birkh\"{a}user, Basel). Golubitsky, M., Stewart, I., & Schaeffer, D. G. [1988] Singularities and Groups in Bifurcation Theory, Vol. 2(Springer, New York). Ikeda, K., Aizawa, H., Kogure, Y. & Takayama, Y. [2018a] Stability of bifurcating patterns of spatial economy models on a hexagonal lattice, Int. J. Bifurcation and Chaos 28(11), 1850138-1--30. Ikeda K., Kogure Y., Aizawa H., & Takayama Y. [2019a] Invariant patterns for replicator dynamics on a hexagonal lattice, Int. J. Bifurcation and Chaos 29(6), 1930014. Ikeda, K. & Murota, K. [2019] Imperfect Bifurcation in Structures and Materials, 3rd ed.(Springer, New York). Ikeda, K., Onda, M., & Takayama, Y. [2018b] Spatial period doubling, invariant pattern, and break point in economic agglomeration in two dimensions, J. Economic Dyn. Contr. 92, 129--152. Ikeda, K., Onda, M., & Takayama, Y. [2019b] Bifurcation theory of a racetrack economy in a spatial economy model, Networks and Spatial Economics 9(1), 57--82. Krugman, P. [1991] Increasing returns and economic geograph, Journal of Political Economy 99(3), 483--499. Oyama, D. [2009] Agglomeration under forward-looking expectations: Potentials and global stability, Regional Science and Urban Economics 39(6), 696--713. Pflüger, M. [2004] A simple, analytically solvable, Chamberlinian agglomeration model, Regional Science and Urban Economics 34, 565--573. Puga, D. [1999] The rise and fall of regional inequalities, European Economic Review 43(2), 303 -- 334. Sandholm, W. H. [2010] Population Games and Evolutionary Dynamics(MIT Press, Cambridge). Tabuchi, T., Thisse, J.-F. & Zeng, D.-Z. [2005] On the number and size of cities, Journal of Economic Geography 5(4), 423--448. Taylor, P. D. & Jonker, L. B. [1978] Evolutionary stable strategies and game dynamics, Mathematical Biosciences 40, 145--156. Zeng, D.-Z. & Uchikawa, T. [2014] Ubiquitous inequality: The home market effect in a multicountry space, Journal of Mathematical Economics 50, 225 -- 233. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/97761 |
Available Versions of this Item
-
Break and sustain bifurcations of S_N-invariant equidistant economy. (deposited 18 Dec 2019 12:23)
- Break and sustain bifurcations of S_N-invariant equidistant economy. (deposited 23 Dec 2019 12:10) [Currently Displayed]