Harin, Alexander (2020): Behavioral sciences and auto-transformations of functions.
Preview |
PDF
MPRA_paper_99286.pdf Download (185kB) | Preview |
Abstract
The two goals of the present article are: 1) To define transformations (named here as auto-transformations) of the probability density functions of random variables (or other functions) into similar functions having smaller sizes of their domains. 2) To research and outline basic features of these transformations. In particular, auto-transformations from infinite to finite domains are analyzed. The goals are caused by the well-known problems of behavioral sciences.
Item Type: | MPRA Paper |
---|---|
Original Title: | Behavioral sciences and auto-transformations of functions |
Language: | English |
Keywords: | probability; variance; noise; bias; measurement; utility theory; prospect theory; behavioral economics; psychology; decision sciences; social sciences; |
Subjects: | C - Mathematical and Quantitative Methods > C0 - General C - Mathematical and Quantitative Methods > C0 - General > C02 - Mathematical Methods C - Mathematical and Quantitative Methods > C1 - Econometric and Statistical Methods and Methodology: General C - Mathematical and Quantitative Methods > C1 - Econometric and Statistical Methods and Methodology: General > C18 - Methodological Issues: General D - Microeconomics > D8 - Information, Knowledge, and Uncertainty D - Microeconomics > D8 - Information, Knowledge, and Uncertainty > D81 - Criteria for Decision-Making under Risk and Uncertainty |
Item ID: | 99286 |
Depositing User: | Alexander Harin |
Date Deposited: | 25 Mar 2020 20:48 |
Last Modified: | 25 Mar 2020 20:48 |
References: | 1. Aczel, J., Luce, D.R.: A behavioral condition for Prelec’s weighting function on the positive line without assuming W(1) = 1. J. Math. Psychol. 51(1), 126-129 (2007). 2. Applebaum, D., Siakalli, M.: Stochastic stabilization of dynamical systems using Levy noise. Stoch. Dynam. 10(4), 509-527 (2010). 3. Arnold, L., Crauel, H., Wihstutz, V.: Stabilization of linear systems by noise. SIAM J. Control Optim. 21(1), 451-461 (1983). 4. Barbu, V.: The internal stabilization by noise of the linearised Navier-Stokes equation. Contr. Op. Ca. Va. 17(1), 117-130 (2009). 5. Bhatia, R., Davis, C.: A better bound on the variance. Am. Math. Mon. 107(1), 353-357 (2000). 6. Biagini, S., Frittelli, M.: A unified framework for utility maximization problems: an Orlicz space approach. Ann. Appl. Probab. 18(1), 929-966 (2008). 7. Cacoullos, T.: On upper and lower bounds for the variance of a function of a random variable. Ann. Probab. 10(3), 799-809 (1982). 8. Cerrai, S.: Stabilization by noise for a class of stochastic reaction-diffusion equations. Probab. Theory Rel. 133(2), 190-214 (2005). 9. Chernoff, H.: The identification of an element of a large population in the presence of noise. Ann. Probab. 9(1), 533-536 (1981). 10. Choulli, T., Ma, J.: Explicit description of HARA forward utilities and their optimal portfolios. Theory Probab. Appl. 61(1), 57-93 (2017). 11. Dokov, S.P., Morton, D.P.: Second-order lower bounds on the expectation of a convex function. Math. Oper. Res. 30(3), 662-677 (2005). 12. F. Flandoli B. Gess, M.S.: Synchronization by noise. Probab. Theory Rel. 168(3-4), 511-556 (2017). 13. G. Hua M. Liub, X.M., Songb, M.: Noise suppresses exponential growth under regime switching. J. Math. Anal. Appl. 355(2), 783-795 (2009). 14. Giacomin, G., Poquet, C.: Noise, interaction, nonlinear dynamics and the origin of rhythmic behaviors. Braz. J. Prob. Stat. 29(2), 460-493 (2015). 15. Harin, A.: Data dispersion in economics (II) – Inevitability and consequences of restrictions. Rev. Econ. Fin. 2(4), 24-36 (2012). 16. Harin, A.: General bounds in economics and engineering at data dispersion and risk. In: Proceedings of the 13th MASR School, no. 13 in Modeling and Analysis of Safety and Risk in Complex Systems, pp. 105-117. IPME RAS, Saint-Petersburg (2015). 17. Harin, A.: Forbidden zones for the expectation. New mathematical results for behavioral and social sciences. MPRA Paper, No 86650 (2018). 18. Kahneman, D., Thaler, R.: Anomalies: Utility maximization and experienced utility. J. Econ. Perspect. 20(1), 221-234 (2006). 19. Madansky, A.: Bounds on the expectation of a convex function of a multivariate random variable. Ann. Math. Stat. 30(1), 743-746 (1959). 20. Moriguti, S.: A lower bound for a probability moment of any absolutely continuous distribution with finite variance. Ann. Math. Stat. 23(2), 286-289 (1959). 21. von Neumann, J., Morgenstern, O.: Theory of games and economic behavior. Princeton University Press, Princeton (1944). 22. Pinelis, I.: Exact lower bounds on the exponential moments of truncated random variables. J. Appl. Probab. 48(2), 547-560 (2011). 23. Prekopa, A.: The discrete moment problem and linear programming. Discrete Appl. Math. 27(3), 235-254 (1990). 24. Scheutzow, M.: Noise can create periodic behavior and stabilize nonlinear diffusions. Stoch. Proc. Appl. 20(2), 323-331 (1985). 25. Sharma, R., Bhandari, R.: On variance upper bounds for unimodal distributions. Commun. Stat. A-Theor. 43(21), 4503-4513 (2014). 26. Sharma, R., Gupta, M., Kapoor, G.: Some better bounds on the variance with applications. J. Math. Inequal. 4(3), 355-363 (2010). 27. Steingrimsson, R., Luce, R.D.: Empirical evaluation of a model of global psychophysical judgments: IV. Forms for the weighting function. J. Math. Psychol. 51(1), 29-44 (2007). 28. Vostrikova, L.: Expected utility maximization for exponential Levy models with option and information processes. Theory Probab. Appl. 61(1), 107-128 (2017). |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/99286 |