Bachoc, Francois and Leeb, Hannes and Pötscher, Benedikt M. (2014): Valid confidence intervals for post-model-selection predictors.
Preview |
PDF
MPRA_paper_60643.pdf Download (369kB) | Preview |
Abstract
We consider inference post-model-selection in linear regression. In this setting, Berk et al.(2013) recently introduced a class of confidence sets, the so-called PoSI intervals, that cover a certain non-standard quantity of interest with a user-specified minimal coverage probability, irrespective of the model selection procedure that is being used. In this paper, we generalize the PoSI intervals to post-model-selection predictors.
Item Type: | MPRA Paper |
---|---|
Original Title: | Valid confidence intervals for post-model-selection predictors |
Language: | English |
Keywords: | Inference post-model-selection, confidence intervals, optimal post-model-selection predictors, non-standard targets, linear regression |
Subjects: | C - Mathematical and Quantitative Methods > C1 - Econometric and Statistical Methods and Methodology: General C - Mathematical and Quantitative Methods > C2 - Single Equation Models ; Single Variables C - Mathematical and Quantitative Methods > C5 - Econometric Modeling > C52 - Model Evaluation, Validation, and Selection |
Item ID: | 60643 |
Depositing User: | Benedikt Poetscher |
Date Deposited: | 16 Dec 2014 07:35 |
Last Modified: | 01 Oct 2019 12:52 |
References: | Berk, R., Brown, L., Buja, A., Zhang, K. and Zhao, L. (2013a). Valid post-selection inference. Ann. Statist., 41 802-837. Berk, R., Brown, L., Buja, A., Zhang, K. and Zhao, L. (2013b). Valid post-selection inference. Unpublished version, URL http://www-stat.wharton.upenn.edu/~lzhao/ papers/MyPublication/24PoSI-submit.pdf. Efron, B., Hastie, T., Johnstone, I. and Tibshirani, R. (2004). Least angle regression. Ann. Statist., 32 407-499. Ewald, K. (2012). On the influence of model selection on confidence regions for marginal associations in the linear model. Master's thesis, University of Vienna. Kabaila, P. and Leeb, H. (2006). On the large-sample minimal coverage probability of confidence intervals after model selection. J. Amer. Statist. Assoc., 101 619-629. Leeb, H. and Pötscher, B. M. (2005). Model selection and inference: Facts and Fiction. Econometric Theory, 21 21-59. Leeb, H. and Pötscher, B. M. (2006). Can one estimate the conditional distribution of post-model-selection estimators? Ann. Statist., 34 2554-2591. Leeb, H. and Pötscher, B. M. (2012). Testing in the presence of nuisance parameters: Some comments on tests post-model-selection and random critical values. Working paper. Leeb, H., Pötscher, B. M. and Ewald, K. (2013). On various confidence intervals post-model-selection. Statist. Sci. forthcoming. Pötscher, B. M. (2009). Confidence sets based on sparse estimators are necessarily large. Sankhya, 71 1-18. Rawlings, J. (1998). Applied Regression Analysis: A Research Tool. Springer Verlag, New York, NY. Scheffé, H. (1959). The Analysis of Variance. Wiley, New York. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/60643 |
Available Versions of this Item
- Valid confidence intervals for post-model-selection predictors. (deposited 16 Dec 2014 07:35) [Currently Displayed]