Delgado Narro, Augusto Ricardo (2020): The Process of Convergence among the Japanese Prefectures: 1955 - 2012.
Preview |
PDF
MPRA_paper_100361.pdf Download (704kB) | Preview |
Abstract
The paper analyzes the convergence process in Japan by time series analysis and the existence of clubs of convergence by finding if they are endogenously conformed. We follow a two-stage approach. The first one consists of the analysis of stochastic convergence. Secondly, prove the existence of clubs of convergence among prefectures. We find two clubs of convergence conformed endogenously. The first club is integrated by 40 prefectures converging slowly toward a unique steady state. Five prefectures integrate the second club of convergence. Finally, Tokyo and Nara are not converging toward any steady-state like disconnected prefectures.
Item Type: | MPRA Paper |
---|---|
Original Title: | The Process of Convergence among the Japanese Prefectures: 1955 - 2012. |
Language: | English |
Keywords: | β-Convergence, Regional Economics, Growth, Clubs of Convergence |
Subjects: | O - Economic Development, Innovation, Technological Change, and Growth > O4 - Economic Growth and Aggregate Productivity > O47 - Empirical Studies of Economic Growth ; Aggregate Productivity ; Cross-Country Output Convergence P - Economic Systems > P2 - Socialist Systems and Transitional Economies > P25 - Urban, Rural, and Regional Economics R - Urban, Rural, Regional, Real Estate, and Transportation Economics > R1 - General Regional Economics > R11 - Regional Economic Activity: Growth, Development, Environmental Issues, and Changes |
Item ID: | 100361 |
Depositing User: | Ph.D. Augusto Delgado |
Date Deposited: | 15 May 2020 05:10 |
Last Modified: | 15 May 2020 05:10 |
References: | 1. Andrews, D. W. K. (1993), “Tests for Parameter Instability and Structural Change with Unknown Change Point”, Econometrica, 61, 821-856 (Corrigendum, 71, 395-397). 2. Andrews, D. W. K., and Ploberger, W. (1994), “Optimal Tests When a Nuisance Parameter is Present Only Under the Alternative”, Econometrica, 62, 1383-1414. 3. Barro, R. (1991), “Economic Growth in a Cross-Section of Countries”, Quarterly Journal of Economics, 106, 407-443. 4. Barro, R. and Sala-i-Martin, X. (1991), “Convergence Across States and Regions”, Brookings Papers Economic Activity No 1, 107-182. 5. Barro, R. and Sala-i-Martin, X. (1992), “Convergence”, The Journal of Political Economy, 100(2), 223-251. 6. Barro, R. and Sala-i-Martin, X. (2004), “Economic Growth”, Second Edition, Massachusetts: MIT Press. 7. Baumol W. (1986), “Productivity growth, convergence, and welfare: what the long run data show”, Journal of Political Economy, 76(1), 12-37. 8. Bernard, A. and Durlauf, S. (1995), “Convergence in International Output”, Journal of Applied Econometrics, 10 (2), 97-108. 9. Cabrera-Castellano, L. (2002), “Convergence and Regional Economic Growth in Mexico: 1970-1995”, Anuario de la DCSEA 2002. Consult: August 2009. Retrieved from: <mpra.ub.uni-muenchen.de/4026>. 1-32. 10. Carlino, C. A. and Mills, L. O. (1993), “Are US regional incomes converging?”, Journal of Monetary Economics, 32, 335-346. 11. Delgado, A. and Del Pozo, J. (2008), “Convergencia y Ciclos Economicos en el Perú: 1979-2008”, CIES, Lima-Perú. 1-82. 12. Delgado, A. and Rodriguez, G. (2015), “Structural Breaks and Convergence in the Regions of Peru: 1970-2010”, Review of Development Economics, 19(02), 346-357. 13. De La Fuente, A. (1997), “The empirics of growth and convergence: A Selective Review”, Journal of Economic Dynamics and Control, 21, 23-73. 14. De la Fuente, A. (2003) “Convergence Equations and Income Dynamics: The sources of OECD Convergence, 1970-1995”, Economic, 70(280), 655-671. 15. De Long, J. and Summers, L. (1991), "Equipment Investment and Economic Growth", The Quarterly Journal of Economics, 106(2), 445-502. 16. Dickey, D.A. and Fuller, W.A., (1979), “Distribution of the estimator for autoregressive time series with a unit root”, Journal of the American Statistical Association, 74, 427–431. 17. Duncan, R. and Fuentes, R. (2005), “Convergencia Regional En Chile: Nuevos tests, viejos resultados”, Banco Central de Chile. Documentos de Trabajo No 313. 1-40. 18. Elías, V. (1995), “Regional Economic Convergence: The Case of Latin American Economies”, Estudios de Economía, 22(2), 159-176. 19. Elliott, G., Rothenberg, T., and Stock, J. (1996), “Efficient Test for an Autoregressive Unit Root”, Econometrica, 64 (4), 813-836. 20. Evans, P., and G. Karras (1996), “Convergence Revisited”, Journal of Monetary Economics, 37, 249-66. 21. Fukao, K., Makino, T., and Tokui, J., (2015), “Regional Factor Inputs and Convergence in Japan: A macro-level analysis, 1955-2008”, RIETI Discussion Paper Series 15-E-123 22. Hamit-Haggar, M. (2013), “A note on convergence across Canadian provinces: new insights from the club clustering algorithm”, The Annals of Regional Science, 50(2), 591-601. 23. Hodrick, R. and E. Prescott (1997), “Postwar us Business Cycles: An Empirical Investigation”, Journal of Money, Credit and Banking, 29, 1-16. 24. Lichtenberg, F. (1994) “Testing the Convergence Hypothesis”, The Review of Economics and Statistic, 76(3), 576-579. 25. Lowey, M. B., and Papell, D. H. (1996), “Are US regional income converging? Some further evidence”, Journal of Monetary Economics, 107, 407-37. 26. Mankiw, G., Romer, D., and Weil, D. (1992) “A Contribution to the Empirics of Economic Growth”, Quarterly Journal of Economics. 107, 407-437. 27. Mitchener, K., and Mc. Lean, I. (1999), “U.S. Regional Growth and Convergence, 1880-1980”, The Journal of Economic History, 59(4), 1016-1042. 28. Nagaraj, R., Varoudakis, A., and Véganzones, M. (1998), “Long-run Growth Trends and Convergence across the Indian States”, Technical Papers N°131. OECD Development Center. 1-56. 29. Ng, S., and Perron, P., (2001). “Lag length selection and the construction of unit root tests with good size and power”, Econometrica, 69, 1519–1554. 30. Perron, P. and Ng, S. (1996), “Useful modifications to some unit root tests with dependent errors and their local asymptotic properties”, Review of Economics Studies, 63, 435-63. 31. Perron, P. and Yabu, T. (2007), “Testing for Shifts in Trend with an Integrated or Stationary Noise Component”, Journal of Business and Economic Statistics, 27, 369-396. 32. Perron, P. and Yabu, T. (2009), “Estimating Deterministic Trend with an Integrated or Stationary Noise Component”, Journal of Econometrics, 151, 56-69. 33. Phillips, P. and Sul, D. (2007), “Transition Modeling and Econometric Convergence Tests”, Econometrica, 75(6), 1771-1855. 34. Phillips, P. and Sul, D. (2009), “Economic Transition and Growth”, Journal of Applied Econometrics, 24, 1153-85. 35. Quah, D. (1993), “Galton´s Fallacy and Tests of the Convergence Hypothesis”, Scandinavian Journal of Economics, 95(4). 36. Romer, D. (2006), “Advanced Macroeconomics”, 3ra edición. Boston: McGraw-Hill. 37. Roy, A., and Fuller, W.A. (2001), “Estimation for Autoregressive Processes with a Root Near One”, Journal of Business and Economic Statistics, 19, 482-493. 38. Said, S. E., and Dickey, D. A., (1984), “Testing for unit roots in autoregressive-moving average models of unknown order”, Biometrika, 71, 599–608. 39. Sala-i-Martin, X. (1996), “The Classical Approach to Convergence Analysis”, The Economic Journal, 106, 1019-1036. 40. Serra, M., Pazmino, M., Lindow, G., Sutton, B. and Ramirez, G. (2006), “Regional Convergence in Latin American”, IMF WP 06/125. 1-29. 41. Shibamoto, M., Tsutsui, Y. and Yamane, Ch., (2016), “Understanding Regional Growth Dynamic in Japan: Panel Cointegration Approach Utilizing the PANIC Method”, Discussion Paper Series RIEB, Kobe University. 17-30. 42. Siriopoulos, C. and Asterieu, D. (1997), “Testing the Convergence Hypothesis for Greece”, Managerial and Decision Economics, 18(5), 383-389. 43. Tomljanovich, M. and Vogelsang, T. J. (2002), “Are US regions converging? Using new econometric methods to examine old issues”, Empirical Economics, 27(1), 49-62. 44. Tsutsumi, M., Seya, H. and Yamagata, Y., (2009), “Regional income convergence in Japan after the bubble economy”. Presented at the III World Conference of the Spatial Econometrics Association: 8–10 July 2009, Barcelona. 1-20. 45. Vogelsang, T.J., (1997), “Testing for a shift in trend when serial correlation is of unknown form”, CAE Working Paper 97-11, Cornell University, Ithaca, NY. 1-38. 46. Vogelsang, T. J. (1998), “Trend function hypothesis testing in the presence of serial correlation,” Econometrica, 66(1), 123-148. 47. Zivot, E. and Andrews, D. W. K. (1992), “Further evidence on the great crash, the oil-prices shock, and the unit-root hypothesis,” Journal of Business and Economic Statistics, 10, 251-70. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/100361 |