Lorko, Matej and Servátka, Maroš and Zhang, Le (2020): Improving the accuracy of project schedules.
Preview |
PDF
MPRA_paper_103367.pdf Download (646kB) | Preview |
Abstract
How to avoid project failures driven by overoptimistic schedules? Managers often attempt to mitigate the duration underestimation and improve the accuracy of project schedules by providing their planners with excessively detailed project specifications. While this traditional approach may be intuitive, solely providing more detailed information has proven to have a limited effect on eliminating behavioral biases. We experimentally test the effectiveness of providing detailed specification and compare it to an alternative intervention of providing historical information about the average duration of similar projects in the past. We find that both interventions mitigate the underestimation bias. However, since providing detailed project specification results in high variance of estimation errors due to sizable over- and underestimates, only the provision of historical information leads to more accurate project duration estimates. We also test whether it is more effective to anchor planners by providing historical information simultaneously with the project specification or to provide the historical information only after beliefs regarding the project duration are formed, in which case planners can regress their initial estimates towards the historical average. We find that the timing of disclosing information does not play a role as the estimation bias is mitigated and the accuracy is improved in both conditions. Finally, we observe that the subjective confidence in the accuracy of duration estimates does not vary across the interventions, suggesting that the confidence is neither a function of the amount nor the detail of available information.
Item Type: | MPRA Paper |
---|---|
Original Title: | Improving the accuracy of project schedules |
Language: | English |
Keywords: | project management, project planning, duration estimation, historical information, project specification, experiment |
Subjects: | C - Mathematical and Quantitative Methods > C9 - Design of Experiments > C91 - Laboratory, Individual Behavior D - Microeconomics > D8 - Information, Knowledge, and Uncertainty > D83 - Search ; Learning ; Information and Knowledge ; Communication ; Belief ; Unawareness O - Economic Development, Innovation, Technological Change, and Growth > O2 - Development Planning and Policy > O21 - Planning Models ; Planning Policy O - Economic Development, Innovation, Technological Change, and Growth > O2 - Development Planning and Policy > O22 - Project Analysis |
Item ID: | 103367 |
Depositing User: | Maroš Servátka |
Date Deposited: | 14 Oct 2020 13:32 |
Last Modified: | 14 Oct 2020 13:32 |
References: | Buehler, R., Griffin, D., & MacDonald, H. (1997). The role of motivated reasoning in optimistic time predictions. Personality and Social Psychology Bulletin, 23(3), 238–247. https://doi.org/10.1177/0146167297233003 Buehler, R., Griffin, D., & Peetz, J. (2010). The Planning Fallacy. Cognitive, Motivational, and Social Origins. Advances in Experimental Social Psychology, 43(C), 1–62. https://doi.org/10.1016/S0065-2601(10)43001-4 Connolly, T., & Dean, D. (1997). Decomposed versus holistic estimates of effort required for software writing tasks. Management Science, 43(7), 1029–1045. https://doi.org/10.1287/mnsc.43.7.1029 Cox, J. C., & Sadiraj, V. (2018). Incentives. In A. Schram & A. Ule (Eds.), Handbook of Research Methods and Applications in Experimental Economics. Edward Elgar Publishing Ltd. Cox, J. C., Sadiraj, V., & Schmidt, U. (2015). Paradoxes and mechanisms for choice under risk. Experimental Economics, 18(2), 215–250. https://doi.org/10.1007/s10683-014-9398-8 Engerman, S., & Sokoloff, K. (2006). Digging the Dirt at Public Expense Governance in the Building of the Erie Canal and Other Public Works. In Corruption and Reform: Lessons from America’s Economic History. Eubanks, D. L., Read, D., & Grushka-Cockayne, Y. (2015). Biases as constraints on planning performance. In M. D. Mumford & M. Frese (Eds.), The Psychology of Planning in Organizations: Research and Applications (pp. 229–242). Routledge. Fildes, R., Goodwin, P., Lawrence, M., & Nikolopoulos, K. (2009). Effective forecasting and judgmental adjustments: an empirical evaluation and strategies for improvement in supply-chain planning. International Journal of Forecasting. https://doi.org/10.1016/j.ijforecast.2008.11.010 Fischbacher, U. (2007). Z-Tree: Zurich toolbox for ready-made economic experiments. Experimental Economics, 10(2), 171–178. https://doi.org/10.1007/s10683-006-9159-4 Flyvbjerg, B. (2006). From Nobel Prize to Project Management: Getting Risk Right. Project Management Journal, 37(3), 18–19. https://doi.org/10.1002/smj.476 Flyvbjerg, B. (2008). Curbing Optimism Bias and Strategic Misrepresentation in Planning: Reference Class Forecasting in Practice. European Planning Studies, 16(1), 3–21. https://doi.org/10.1080/09654310701747936 Flyvbjerg, B., Holm, M. S., & Buhl, S. (2002). Underestimating costs in public works projects: Error or lie? Journal of the American Planning Association, 68(3), 279–295. https://doi.org/10.1080/01944360208976273 Flyvbjerg, B., Skamris Holm, M. K., & Buhl, S. L. (2005). How (In)accurate are demand forecasts in public works projects?: The case of transportation. Journal of the American Planning Association, 71(2), 131–146. https://doi.org/10.1080/01944360508976688 Forsyth, D. K., & Burt, C. D. B. (2008). Allocating time to future tasks: the effect of task segmentation on planning fallacy bias. Memory & Cognition, 36(4), 791–798. https://doi.org/10.3758/MC.36.4.791 Galton, F. (1907). Vox populi (The wisdom of crowds). Nature, 75(7), 450–451. Geman, S., Bienenstock, E., & Doursat, R. (1992). Neural Networks and the Bias/Variance Dilemma. Neural Computation, 4(1), 1–58. https://doi.org/10.1162/neco.1992.4.1.1 Goodwin, P., Moritz, B., & Siemsen, E. (2019). Forecast decisions. In The Handbook of Behavioral Operations. https://doi.org/10.1002/9781119138341.ch12 Greiner, B. (2015). Subject pool recruitment procedures: organizing experiments with ORSEE. Journal of the Economic Science Association, 1(1), 114–125. https://doi.org/10.1007/s40881-015-0004-4 Grushka-Cockayne, Y., Erat, S., Wooten, J., Donohue, K., Katok, E., & Leider, S. (2018). New product development and project management decisions. In In The Handbook of Behavioral Operations (pp. 367–392). NJ: Wiley. Halkjelsvik, T., & Jørgensen, M. (2012). From origami to software development: A review of studies on judgment-based predictions of performance time. Psychological Bulletin, 138(2), 238–271. https://doi.org/10.1037/a0025996 Hertwig, R., & Ortmann, A. (2001). Experimental practices in economics: a methodological challenge for psychologists? Behavioral and Brain Sciences, 24(3), 383–403; discussion 403-451. https://doi.org/10.1037/e683322011-032 Holt, C. A. (1986). Preference reversals and the independence axiom. The American Economic Review, 76(3), 508–515. Holt, C. A., & Laury, S. K. (2002). Risk aversion and incentive effects. American Economic Review, 92(5), 1644–1655. https://doi.org/10.1257/000282802762024700 IPMA. (2015). IPMA Competence Baseline (ICB), Version 4.0. International Project Management Association. https://doi.org/10.1002/ejoc.201200111 Kahneman, D. (2011). Thinking , Fast and Slow (Abstract). Book. https://doi.org/10.1007/s13398-014-0173-7.2 Kahneman, D., & Lovallo, D. (1993). Timid Choices and Bold Forecasts: A Cognitive Perspective on Risk Taking. Management Science, 39(1), 17–31. https://doi.org/10.1287/mnsc.39.1.17 Kahneman, D., & Tversky, A. (1977). Intuitive prediction: biases and corrective procedures. Technical Report. Advanced Decision Technology, 12. https://doi.org/citeulike-article-id:3614496 Kelley, J. E. (1961). Critical-Path Planning and Scheduling: Mathematical Basis. Operations Research. https://doi.org/10.1287/opre.9.3.296 König, C. J. (2005). Anchors distort estimates of expected duration. Psychological Reports, 96(2), 253–256. https://doi.org/10.2466/PR0.96.2.253-256 Kremer, M., Moritz, B., & Siemsen, E. (2011). Demand forecasting behavior: System neglect and change detection. Management Science. https://doi.org/10.1287/mnsc.1110.1382 Kruger, J., & Evans, M. (2004). If you don’t want to be late, enumerate: Unpacking reduces the planning fallacy. Journal of Experimental Social Psychology. https://doi.org/10.1016/j.jesp.2003.11.001 Lorko, M., Servátka, M., & Zhang, L. (2019). Anchoring in project duration estimation. Journal of Economic Behavior & Organization, 162, 49–65. Lorko, M., Servátka, M., & Zhang, L. (2020). Hidden inefficiency: Strategic inflation of project schedules (Working paper). Lovallo, D., & Kahneman, D. (2003). Delusions of Success: How Optimism Undermines Executives’ Decisions. Harvard Business Review. https://doi.org/10.1225/R0307D Massey, C., & Wu, G. (2005). Detecting regime shifts: The causes of under- and overreaction. Management Science. https://doi.org/10.1287/mnsc.1050.0386 Mazar, N., Amir, O., & Ariely, D. (2008). The Dishonesty of Honest People: A Theory of Self-Concept Maintenance. Journal of Marketing Research, 45(6), 633–644. https://doi.org/10.1509/jmkr.45.6.633 Nesselroade, J. R., Stigler, S. M., & Baltes, P. B. (1980). Regression toward the mean and the study of change. Psychological Bulletin. https://doi.org/10.1037/0033-2909.88.3.622 Newby-Clark, I. R., Ross, M., Koehler, D. J., Buehler, R., & Griffin, D. (2000). People focus on optimistic scenarios and disregard pessimistic scenarios while predicting task completion times. Journal of Experimental Psychology: Applied. https://doi.org/10.1037/1076-898X.6.3.171 Project Management Institute. (2013). A guide to the project management body of knowledge (PMBOK ® guide). Project Management Institute. https://doi.org/10.1002/pmj.20125 Project Management Institute. (2017). PMI’s Pulse of the Profession 2017. Roy, M. M., Mitten, S. T., & Christenfeld, N. J. S. (2008). Correcting memory improves accuracy of predicted task duration. Journal of Experimental Psychology. Applied, 14(3), 266–275. https://doi.org/10.1037/1076-898X.14.3.266 Shmueli, O., Pliskin, N., & Fink, L. (2016). Can the outside-view approach improve planning decisions in software development projects? Information Systems Journal, 26(4), 395–418. https://doi.org/10.1111/isj.12091 Staats, B. R., Milkman, K. L., & Fox, C. R. (2012). The team scaling fallacy: Underestimating the declining efficiency of larger teams. Organizational Behavior and Human Decision Processes. https://doi.org/10.1016/j.obhdp.2012.03.002 Thomas, K. E., & Handley, S. J. (2008). Anchoring in time estimation. Acta Psychologica, 127(1), 24–29. https://doi.org/10.1016/j.actpsy.2006.12.004 Tversky, A., & Kahneman, D. (1974). Judgments under uncertainty: Heuristics and biases. Science, 185(4157), 1124–1131. https://doi.org/10.1126/science.185.4157.1124 |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/103367 |