Poblete-Cazenave, Miguel and Pachauri, Shonali (2020): A simulation-based estimation model of household electricity demand and appliance ownership.
Preview |
PDF
MPRA_paper_103403.pdf Download (6MB) | Preview |
Abstract
Understanding how electricity demand is likely to rise once households gain access to it is important to policy makers and planners alike. Current approaches to estimate the latent demand of unelectrified populations usually assume constant elasticity of demand. Here we use a simulation-based structural estimation approach, employing micro-data from household surveys for four developing nations, to estimate responsiveness of electricity demand and appliance ownership to income considering changes both on the intensive and extensive margin. We find significant heterogeneity in household response to income changes, which suggest that assuming a non-varying elasticity can result in biased estimates of demand. Our results confirm that neglecting heterogeneity in individual behavior and responses can result in biased demand estimates.
Item Type: | MPRA Paper |
---|---|
Original Title: | A simulation-based estimation model of household electricity demand and appliance ownership |
Language: | English |
Keywords: | Energy Access, Household Energy Demand, Appliances Uptake, Simulation-based Econometrics, Scenario Analysis |
Subjects: | C - Mathematical and Quantitative Methods > C5 - Econometric Modeling > C53 - Forecasting and Prediction Methods ; Simulation Methods D - Microeconomics > D1 - Household Behavior and Family Economics > D12 - Consumer Economics: Empirical Analysis O - Economic Development, Innovation, Technological Change, and Growth > O1 - Economic Development > O13 - Agriculture ; Natural Resources ; Energy ; Environment ; Other Primary Products Q - Agricultural and Natural Resource Economics ; Environmental and Ecological Economics > Q4 - Energy |
Item ID: | 103403 |
Depositing User: | Miguel Poblete-Cazenave |
Date Deposited: | 12 Oct 2020 20:45 |
Last Modified: | 12 Oct 2020 20:46 |
References: | International Energy Agency, (2020). Electricity final energy consumption in south africa by scenario,2018-2040. https://www.iea.org/data-and-statistics/charts/electricity-final-energy-consumption-in-south-africa-by-scenario-2018-2040. Auffhammer, M. and C. D. Wolfram (2014). Powering up china: Income distributions and residential electricity consumption. American Economic Review 104 (5), 575–80. Beck, H. E., N. E. Zimmermann, T. R. McVicar, N. Vergopolan, A. Berg, and E. F. Wood (2018). Present and future köppen-geiger climate classification maps at 1-km resolution. Scientific Data 5 (1), 180214. Blundell, R., J. Horowitz, and M. Parey (2017). Nonparametric estimation of a nonseparable demand function under the slutsky inequality restriction. The Review of Economics and Statistics 99 (2), 291–304. Chunekar, A. and A. Sreenivas (2019). Towards an understanding of residential electricity consumption in india. Building Research & Information 47 (1), 75–90. Cuaresma, J. C. (2017). Income projections for climate change research: A framework based on human capital dynamics. Global Environmental Change 42, 226 – 236. Dagnachew, A. G., P. L. Lucas, A. F. Hof, and D. P. van Vuuren (2018). Trade-offs and synergies between universal electricity access and climate change mitigation in sub-saharan africa. Energy Policy 114, 355 – 366. Dang, C., J. Zhang, C. Kwong, and L. Li (2019). Demand side load management for big industrial energy users under blockchain-based peer-to-peer electricity market. IEEE Transactions on Smart Grid 10 (6), 6426–6435. de Fátima S.R. Arthur, M., C. A. Bond, and B. Willson (2012). Estimation of elasticities for domestic energy demand in mozambique. Energy Economics 34 (2), 398 – 409. de la Rue du Can, S., A. Khandekar, N. Abhyankar, A. Phadke, N. Z. Khanna, D. Fridley, and N. Zhou (2019). Modeling india’s energy future using a bottom-up approach. Applied Energy 238, 1108 – 1125. Dhanaraj, S., V. Mahambare, and P. Munjal (2018). From income to household welfare: Lessons from refrigerator ownership in india. Journal of Quantitative Economics 16 (2), 573–588. Dubin, J. A. and D. McFadden (1984). An econometric analysis of residential electric appliance holdings and consumption. Econometrica 52 (2), 345–62. Filippini, M. and S. Pachauri (2004). Elasticities of electricity demand in urban indian households. Energy Policy 32 (3), 429 – 436. Fricko, O., P. Havlik, J. Rogelj, Z. Klimont, M. Gusti, N. Johnson, P. Kolp, M. Strubegger, H. Valin, M. Amann, T. Ermolieva, N. Forsell, M. Herrero, C. Heyes, G. Kindermann, V. Krey, D. L. McCollum, M. Obersteiner, S. Pachauri, S. Rao, E. Schmid, W. Schoepp, and K. Riahi (2017). The marker quantification of the shared socioeconomic pathway 2: A middle-of-the-road scenario for the 21st century. Global Environmental Change 42, 251 – 267. Gertler, P. J., O. Shelef, C. D. Wolfram, and A. Fuchs (2016). The demand for energy-using assets among the world’s rising middle classes. American Economic Review 106 (6), 1366–1401. Gourieroux, C., A. Monfort, and E. Renault (1993). Indirect inference. Journal of Applied Econometrics 8 (S), S85–118. Halvorsen, B. and B. M. Larsen (2013). How serious is the aggregation problem? an empirical illustration. Applied Economics 45 (26), 3786–3794. Harold, J., J. Cullinan, and S. Lyons (2017). The income elasticity of household energy demand: a quantile regression analysis. Applied Economics 49 (54), 5570–5578. Hijmans, R. (2012). Gadm database of global administrative areas, version 2.0. Jiang, L. and B. C. O’Neill (2017). Global urbanization projections for the shared socioeconomic pathways. Global Environmental Change 42, 193 – 199. KC, S. and W. Lutz (2017). The human core of the shared socioeconomic pathways: Population scenarios by age, sex and level of education for all countries to 2100. Global Environmental Change 42, 181 – 192. Kemausuor, F., E. Adkins, I. Adu-Poku, A. Brew-Hammond, and V. Modi (2014). Electrification planning using network planner tool: The case of ghana. Energy for Sustainable Development 19, 92 – 101. Lescaroux, F. (2012). Household electricity demand, worldwide: climbing the ‘ladder of needs’. OPEC Energy Review 36 (3), 247–271. Liu, Y., Y. Gao, Y. Hao, and H. Liao (2016). The relationship between residential electricity consumption and income: A piecewise linear model with panel data. Energies 9 (10), –. Lloyd, C. T., A. Sorichetta, and A. J. Tatem (2017). High resolution global gridded data for use in population studies. Scientific Data 4 (1), 170001. McNeil, M. A. and V. E. Letschert (2010). Modeling diffusion of electrical appliances in the residential sector. Energy and Buildings 42 (6), 783 – 790. Mentis, D., M. Howells, H. Rogner, A. Korkovelos, C. Arderne, E. Zepeda, S. Siyal, C. Taliotis, M. Bazilian, A. de Roo, Y. Tanvez, A. Oudalov, and E. Scholtz (2017). Lighting the world: the first application of an open source, spatial electrification tool (onsset) on sub-saharan africa. Environmental Research Letters 12 (8), e085003. Pachauri, S. and L. Jiang (2008). The household energy transition in india and china. Energy Policy 36 (11), 4022 – 4035. Transition towards Sustainable Energy Systems. Pachauri, S., B. van Ruijven, Y. Nagai, K. Riahi, D. van Vuuren, A. Brew-Hammond, and N. Nakicenovic (2013). Pathways to achieve universal household access to modern energy by 2030. Environmental Research Letters 8 (2), no.024015. Poblete-Cazenave, M., A. Aktaş, and S. Pachauri (2020). Structural econometrics vs machine learning: Behavioral modelling vs empirical fit for energy demand scenarios (Work in Progress). Technical report, International Institute for Applied Systems Analysis (IIASA). Rao, N. D., P. Sauer, M. Gidden, and K. Riahi (2018). Income inequality projections for the shared socioeconomic pathways (ssps). Futures 105, 27 – 39. Rao, N. D. and K. Ummel (2017). White goods for white people? drivers of electric appliance growth in emerging economies. Energy Research & Social Science 27, 106 – 116. Riahi, K., D. P. van Vuuren, E. Kriegler, J. Edmonds, B. C. O’Neill, S. Fujimori, N. Bauer, K. Calvin, R. Dellink, O. Fricko, W. Lutz, A. Popp, J. C. Cuaresma, S. KC, M. Leimbach, L. Jiang, T. Kram, S. Rao, J. Emmerling, K. Ebi, T. Hasegawa, P. Havlik, F. Humpenöder, L. A. D. Silva], S. Smith, E. Stehfest, V. Bosetti, J. Eom, D. Gernaat, T. Masui, J. Rogelj, J. Strefler, L. Drouet, V. Krey, G. Luderer, M. Harmsen, K. Takahashi, L. Baumstark, J. C. Doelman, M. Kainuma, Z. Klimont, G. Marangoni, H. Lotze-Campen, M. Obersteiner, A. Tabeau, and M. Tavoni (2017). The shared socioeconomic pathways and their energy, land use, and greenhouse gas emissions implications: An overview. Global Environmental Change 42, 153 – 168. Rovenskaya, E., K. A. Samani, A. Baklanov, T. Ermolieva, C. Folberth, S. Fritz, H. Hadi, V. J. Rincón, A. Krasovskii, F. Laurien, M. P. Cazenave, T. Schinko, M. Smilovic, and P. Zebrowski (2019). Artificial intelligence and machine learning for systems analysis of the 21st century. IIASA Working Paper, International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria. Samad, H. and F. Zhang (2018). Electrification and Household Welfare: Evidence from Pakistan. The World Bank. Taneja, J. (2018). If you build it, will they consume? key challenges for universal, reliable, and low-cost electricity delivery in kenya. Working Papers 491, Center for Global Development. Twerefou, D. K. and J. O. Abeney (2020). Efficiency of household electricity consumption in ghana. Energy Policy 144, 111661. van Ruijven, B. J., J. Schers, and D. P. van Vuuren (2012). Model-based scenarios for rural electrification in developing countries. Energy 38 (1), 386 – 397. Wolfram, C., O. Shelef, and P. Gertler (2012). How will energy demand develop in the developing world? Journal of Economic Perspectives 26 (1), 119–38. Zeyringer, M., S. Pachauri, E. Schmid, J. Schmidt, E. Worrell, and U. B. Morawetz (2015). Analyzing grid extension and stand-alone photovoltaic systems for the cost-effective electrification of kenya. Energy for Sustainable Development 25, 75 – 86. Zhou, S. and F. Teng (2013). Estimation of urban residential electricity demand in china using household survey data. Energy Policy 61, 394 – 402. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/103403 |