Lucchetti, Riccardo and Valentini, Francesco (2021): Kernel-based Time-Varying IV estimation: handle with care.
Preview |
PDF
MPRA_paper_110033.pdf Download (1MB) | Preview |
Abstract
Giraitis, Kapetanios, and Marcellino (Journal of Econometrics, 2020) proposed a kernel-based time-varying coefficients IV estimator. By using entirely different code, We broadly replicate the simulation results and the empirical application on the Phillips Curve but we note that a small coding mistake might have affected some of the reported results. Further, we extend the results by using a different sample and many kernel functions; we find that the estimator is remarkably robust across a wide range of smoothing choices, but the effect of outliers may be less obvious than expected.
Item Type: | MPRA Paper |
---|---|
Original Title: | Kernel-based Time-Varying IV estimation: handle with care |
Language: | English |
Keywords: | Instrumental variables, Time-varying parameters, Hausman test, Phillips curve |
Subjects: | C - Mathematical and Quantitative Methods > C1 - Econometric and Statistical Methods and Methodology: General > C14 - Semiparametric and Nonparametric Methods: General C - Mathematical and Quantitative Methods > C2 - Single Equation Models ; Single Variables > C26 - Instrumental Variables (IV) Estimation C - Mathematical and Quantitative Methods > C5 - Econometric Modeling > C51 - Model Construction and Estimation |
Item ID: | 110033 |
Depositing User: | Francesco Valentini |
Date Deposited: | 07 Oct 2021 04:48 |
Last Modified: | 28 Jan 2022 11:30 |
References: | Bai, J., & Perron, P. (2003). Critical values for multiple structural change tests. The Econometrics Journal , 6 (1), 72–78. Chow, G. C. (1960). Tests of equality between sets of coefficients in two linear regressions. Econometrica, 28 , 591–605. Davidson, R., & MacKinnon, J. G. (1999). Econometric theory and methods. Oxford University Press. Giraitis, L., Kapetanios, G., & Marcellino, M. (2020). Time-varying instrumental variable estimation. Journal of Econometrics, forthcoming. doi:10.1016/j.jeconom.2020.08.013 Giraitis, L., Kapetanios, G., & Yates, T. (2014). Inference on stochastic time-varying coefficient models. Journal of Econometrics, 179 (1), 46-65. doi:10.1016/j.jeconom.2013.10.009 Giraitis, L., Kapetanios, G., & Yates, T. (2018). Inference on multivariate heteroscedastic time varying random coefficient models. Journal of Time Series Analysis, 39 (2), 129–149. doi:10.1111/jtsa.12271 Hamilton, J. (1994). Time series econometrics. Princeton University Press Princeton, NJ. Kapetanios, G., Marcellino, M., & Venditti, F. (2019). Large time-varying parameter vars: A nonparametric approach. Journal of Applied Econometrics, 34 (7), 1027–1049. Ruisi, G. (2019). Time-varying local projections (Working Papers No. 891). Queen Mary University of London, School of Economics and Finance. Schlicht, E. (2021). Vc: a method for estimating time-varying coefficients in linear models. Journal of the Korean Statistical Society, 1–33. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/110033 |