Basistha, Arabinda and Kurov, Alexander and Wolfe, Marketa Halova (2019): Volatility Forecasting: The Role of Internet Search Activity and Implied Volatility. Published in: Journal of Risk Model Validation , Vol. 14, (2019): pp. 43-53.
Preview |
PDF
MPRA_paper_111037.pdf Download (359kB) | Preview |
Abstract
Recent empirical literature shows that Internet search activity is closely associated with volatility prediction in financial and commodity markets. In this study, we search for a benchmark model with available market-based predictors to evaluate the net contribution of the Internet search activity data in forecasting volatility. We conduct in-sample analysis and window-size robust out-of-sample forecasting analysis in multiple markets for robust model validation. The predictive power of the Internet search activity data disappears in the financial markets and substantially diminishes in the commodity markets once the model includes implied volatility. A further common component analysis shows that most of the predictive information contained in the Internet search activity is also present in implied volatility while implied volatility has additional predictive information that is not contained in the Internet search activity data.
Item Type: | MPRA Paper |
---|---|
Original Title: | Volatility Forecasting: The Role of Internet Search Activity and Implied Volatility |
Language: | English |
Keywords: | Volatility forecasting, realized volatility, implied volatility, Internet search activity, Google Trends search volume index, information |
Subjects: | C - Mathematical and Quantitative Methods > C3 - Multiple or Simultaneous Equation Models ; Multiple Variables C - Mathematical and Quantitative Methods > C3 - Multiple or Simultaneous Equation Models ; Multiple Variables > C32 - Time-Series Models ; Dynamic Quantile Regressions ; Dynamic Treatment Effect Models ; Diffusion Processes ; State Space Models C - Mathematical and Quantitative Methods > C5 - Econometric Modeling > C52 - Model Evaluation, Validation, and Selection G - Financial Economics > G1 - General Financial Markets > G12 - Asset Pricing ; Trading Volume ; Bond Interest Rates G - Financial Economics > G1 - General Financial Markets > G14 - Information and Market Efficiency ; Event Studies ; Insider Trading G - Financial Economics > G1 - General Financial Markets > G17 - Financial Forecasting and Simulation |
Item ID: | 111037 |
Depositing User: | Marketa Wolfe |
Date Deposited: | 13 Dec 2021 08:36 |
Last Modified: | 08 Mar 2022 06:56 |
References: | Andersen, T. G., Bollerslev, T., and Diebold, F. X. (2007). Roughing it up: Including jump components in the measurement, modeling, and forecasting of return volatility, The Review of Economics and Statistics 89(4), 701–720. https://doi.org/10.1162/rest.89.4.701. Andersen, T. G., Bollerslev, T., Diebold, F. X., and Labys, P. (2001). The distribution of realized exchange rate volatility. Journal of the American Statistical Association 96(453), 42–55. https://doi.org/10.1198/016214501750332965. Andersen, T. G., Bollerslev, T., Diebold, F. X., and Labys, P. (2003). Modelling and forecasting realized volatility. Econometrica 71(2), 579–625. https://doi.org/10.1111/1468- 0262.00418. Andersen, T. G., Bollerslev, T., and Meddahi, N. (2004). Analytical evaluation of volatility forecasts. International Economic Review 45(4), 1079–1110. https://doi.org/10.1111/j.0020-6598.2004.00298.x. Andrei, D., and Hasler, M. (2015). Investor attention and stock market volatility, Review of Financial Studies 28(1), 33–72. https://doi.org/10.1093/rfs/hhu059. Basak, G. K., Chan, N. H., and Palma, W. (2001). The approximation of long memory by an ARMA model. Journal of Forecasting 20(6), 367–389. https://doi.org/10.1002/for.799. Bollerslev, T., Tauchen, G., and Zhou, H. (2009). Expected stock returns and variance risk premia. The Review of Financial Studies 22(11), 4463–4492. https://doi.org/10.1093/rfs/hhp008. Brownlees, C., Engle R., and Kelly, B. (2012). A practical guide to volatility forecasting through calm and storm. Journal of Risk 14(2), 3–22. https://doi.org/10.21314/JOR.2012.237. Busch, T., Christensen, B. J., and Nielsen, M. Ø. (2011). The role of implied volatility in forecasting future realized volatility and jumps in foreign exchange, stock, and bond markets. Journal of Econometrics 160(1), 48–57. https://doi.org/10.1016/j.jeconom.2010.03.014. Choi, H., and Varian, H. (2012). Predicting the present with Google Trends. Economic Record 88(s1), 2–9. https://doi.org/10.1111/j.1475-4932.2012.00809.x. Christensen, B. J., and Prabhala, N. R. (1998). The relation between implied and realized volatility. Journal of Financial Economics 50(2), 125–150. https://doi.org/10.1016/S0304-405X(98)00034-8. Christiansen, C., Schmeling, M., and Schrimpf, A. (2012). A comprehensive look at financial volatility prediction by economic variables. Journal of Applied Econometrics 27(6), 956–977. https://doi.org/10.1002/jae.2298. Chronopoulos, D. K., Papadimitriou, F.I., and Vlastakis, N. (2018). Information demand and stock return predictability. Journal of International Money and Finance 80, 59–74. https://doi.org/10.1016/j.jimonfin.2017.10.001. Clark, T. E., and McCracken, M. W. (2001). Tests of equal forecast accuracy and encompassing for nested models. Journal of Econometrics 105(1), 85–110. https://doi.org/10.1016/S0304-4076(01)00071-9. Cole, R. (1969). Data errors and forecasting accuracy, in J. A. Mincer (Ed.) Economic Forecasts and Expectations: Analysis of Forecasting Behavior and Performance, 47–82, NBER. Da, Z., Engelberg, J., and Gao, P. (2011). In search of attention. Journal of Finance 66(5), 1461–1499. https://doi.org/10.1111/j.1540-6261.2011.01679.x. Da, Z., Engelberg, J., and Gao, P. (2015). The sum of all FEARS: Investor sentiment and asset prices. Review of Financial Studies 28(1), 1–32. https://doi.org/10.1093/rfs/hhu072. Darrat, A. F., Zhong, M., and Cheng, L. T. W. (2007). Intraday volume and volatility relations with and without public news. Journal of Banking & Finance 31(9), 2711–2729. https://doi.org/10.1016/j.jbankfin.2006.11.019. Diebold, F. X., and Mariano, R. S. (1995). Comparing predictive accuracy. Journal of Business & Economic Statistics 13(3), 253–263. https://doi.org/10.1080/07350015.1995.10524599. Dimpfl, T., and Jank, S. (2016). Can Internet search queries help to predict stock market volatility. European Financial Management 22(2), 171–192. https://doi.org/10.1111/eufm.12058. Durbin, J. (1960). The fitting of time-series models. Review of the International Statistical Institute 28(3), 233–244. https://doi.org/10.2307/1401322. Dzielinski, M. (2012). Measuring economic uncertainty and its impact on the stock market. Finance Research Letters 9(3), 167–175. https://doi.org/10.1016/j.frl.2011.10.003. Fleming, J., Kirby, C., and Ostdiek, B. (2003). The economic value of volatility timing using "realized" volatility. Journal of Financial Economics, 67(3), 473–509. https://doi.org/10.1016/S0304-405X(02)00259-3. French, F. and Roll, R. (1986). Stock return variances: The arrival of information and the reaction of traders. Journal of Financial Economics, 17(1), 5–26. https://doi.org/10.1016/0304-405X(86)90004-8. Ginsberg, J., Mohebbi, M.H., Patel, R.S., Brammer, L., Smolinski, M.S., and Brilliant, L. (2009). Detecting influenza epidemics using search engine query data. Nature 457, 1012–1015. https://doi.org/10.1038/nature0763410.1038/nature07634. Goddard, J., Kita, A., and Wang, Q. (2015). Investor attention and FX market volatility. Journal of International Financial Markets, Institutions & Money 38, 79–96. https://doi.org/10.1016/j.intfin.2015.05.001. Han, H., and Park, M. D. (2013). Comparison of realized measure and implied volatility in forecasting volatility. Journal of Forecasting 32(6), 522-533. https://doi.org/10.1002/for.2253. Kalman, R. E. (1960). A new approach to linear filtering and prediction problems. Transactions ASME Journal of Basic Engineering 82(1), 35-45. https://doi.org/10.1115/1.3662552. Kambouroudis, D. S., McMillan, D. G., and Tsakou, K. (2016). Forecasting stock return volatility: A comparison of GARCH, implied volatility, and realized volatility models. Journal of Futures Markets 36(12), 1127–1163. https://doi.org/10.1002/fut.21783. Kim, C.-J., and Nelson, C. (1999). State-space models with regime switching. MIT Press, Cambridge, MA. Koreisha, S., and Pukkila, T. (1989). Fast linear estimation methods for vector autoregressive moving-average models. Journal of Time Series Analysis 10(4), 325–339. https://doi.org/10.1111/j.1467-9892.1989.tb00032.x. Lamoureux, C. G., and Lastrapes, W. D. (1990). Heteroskedasticity in stock return data: Volume versus GARCH effects. Journal of Finance 45(1), 221–229. https://doi.org/10.1111/j.1540-6261.1990.tb05088.x. Lee, S. S., and Mykland, P. A. (2008). Jumps in financial markets: A new nonparametric test and jump dynamics. Review of Financial Studies 21(6), 2535–2563. https://doi.org/10.1093/rfs/hhm056. Lella, A. (2016, March 16). Comscore Releases February 2016 U.S. Desktop Search Engine Rankings. Retrieved from https://www.comscore.com/Insights/Rankings/comScore- Releases-February-2016-US-Desktop-Search-Engine-Rankings. Marcellino, M. (2008). A Linear Benchmark for Forecasting GDP Growth and Inflation? Journal of Forecasting 27(4), 304-340. https://doi.org/10.1002/for.1059. Meese, R. A., and Rogoff, K. (1983) Empirical exchange rate models of the seventies: Do they fit out of sample? Journal of International Economics 14, 3–24. https://doi.org/10.1016/0022-1996(83)90017-X. Nelson, C. R. (1972). The prediction performance of the FRB-MIT-PENN model of the U.S. economy. American Economic Review 62(5), 902–917. Patton, A. (2011). Volatility forecast comparison using imperfect volatility proxies. Journal of Econometrics 160(1), 246–256. https://doi.org/10.1016/j.jeconom.2010.03.034. Phillips, P. C. B., and Perron, P. (1988). Testing for a unit root in time series regression. Biometrika 75(2), 335–346. https://doi.org/10.1093/biomet/75.2.335 Rossi, B., and Inoue, A. (2012). Out-of-sample forecast tests robust to the choice of window size. Journal of Business & Economic Statistics 30(3), 432–453. https://doi.org/10.1080/07350015.2012.693850. Smith, G. P. (2012). Google Internet search activity and volatility prediction in the market for foreign currency. Finance Research Letters 9(2), 103–110. https://doi.org/10.1016/j.frl.2012.03.003. Szakmary, A., Ors, E., Kim, J. K., and Davidson, W. N. III (2003). The predictive power of implied volatility: Evidence from 35 futures markets. Journal of Banking & Finance 27(11), 2151–2175. https://doi.org/10.1016/S0378-4266(02)00323-0. Vlastakis, N., and Markellos, R. N. (2012). Information demand and stock market volatility. Journal of Banking & Finance 36(6), 1808–1821. https://doi.org/10.1016/j.jbankfin.2012.02.007. Vozlyublennaia, N. (2014). Investor attention, index performance, and return predictability. Journal of Banking & Finance 41, 17–35. https://doi.org/10.1016/j.jbankfin.2013.12.010. Wu, L., and Brynjolfsson, E. (2015). The future of prediction: How Google searches foreshadow housing prices and sales. Economic Analysis of the Digital Economy. Eds. Avi Goldfarb, Shane Greenstein and Catherine Tucker. Chicago: University of Chicago Press. 89–118. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/111037 |