Li, Kunpeng (2022): Threshold spatial autoregressive model.
Preview |
PDF
MPRA_paper_113568.pdf Download (427kB) | Preview |
Abstract
This paper considers the estimation and inferential issues of threshold spatial autoregressive model, which is a hybrid of threshold model and spatial autoregressive model. We consider using the quasi maximum likelihood (QML) method to estimate the model. We prove the tightness and the H\'{a}jek-R\'{e}nyi type inequality for a quadratic form, and establish a full inferential theory of the QML estimator under the setup that threshold effect shrinks to zero along with an increasing sample size. We consider the hypothesis testing on the presence of threshold effect. Three super-type statistics are proposed to perform this testing. Their asymptotic behaviors are studied under the Pitman local alternatives. A bootstrap procedure is proposed to obtain the asymptotically correct critical value. We also consider the hypothesis testing on the threshold value equal to some prespecified one. We run Monte carlo simulations to investigate the finite sample performance of the QML estimators and find that the QML estimators have good performance.
Item Type: | MPRA Paper |
---|---|
Original Title: | Threshold spatial autoregressive model |
Language: | English |
Keywords: | Spatial autoregressive models, Spillover effects, Threshold effect, Maximum likelihood estimation, Inferential theory. |
Subjects: | C - Mathematical and Quantitative Methods > C1 - Econometric and Statistical Methods and Methodology: General > C12 - Hypothesis Testing: General C - Mathematical and Quantitative Methods > C3 - Multiple or Simultaneous Equation Models ; Multiple Variables > C31 - Cross-Sectional Models ; Spatial Models ; Treatment Effect Models ; Quantile Regressions ; Social Interaction Models |
Item ID: | 113568 |
Depositing User: | Kunpeng Li |
Date Deposited: | 30 Jun 2022 08:50 |
Last Modified: | 30 Jun 2022 08:50 |
References: | Andrews, D. W. (1993). Tests for parameter instability and structural change with unknown change point. Econometrica, 61(4), 821-856. Andrews, D. W., and Ploberger, W. (1994). Optimal tests when a nuisance parameter is present only under the alternative. Econometrica, 62(6), 1383-1414. Anselin, L. (1988). Spatial econometrics: methods and models. The Netherlands: Kluwer Academic Publishers. Bao, Y., and Ullah, A. (2010). Expectation of quadratic forms in normal and nonnormal variables with applications. Journal of Statistical Planning and Inference, 140(5), 1193-1205. Bramoull\'{e}, Y., Djebbari, H., and Fortin, B. (2009). Identification of peer effects through social networks. Journal of econometrics, 150(1), 41-55. Billingsley, P. (1968). Convergence of probability measures. John Wiley & Sons. Caner, M., and Hansen, B. E. (2004). Instrumental variable estimation of a threshold model. Econometric Theory, 20(5), 813-843. Calv\'{o}-Armengol, A., Patacchini, E., and Zenou, Y. (2009). Peer effects and social networks in education. The Review of Economic Studies, 76(4), 1239-1267. Chan, K. S. (1993). Consistency and limiting distribution of the least squares estimator of a threshold autoregressive model. The annals of statistics, 21(1), 520-533. Chan, K. S., and Tsay, R. S. (1998). Limiting properties of the least squares estimator of a continuous threshold autoregressive model. Biometrika, 85(2), 413-426. Chen, S. X., Zhang, L. X., and Zhong, P. S. (2010). Tests for high-dimensional covariance matrices. Journal of the American Statistical Association, 105(490), 810-819. Cliff, A. D., and Ord, J. K. (1973) Spatial autocorrelation, London: Pion Ltd. Davies, R. B. (1977). Hypothesis testing when a nuisance parameter is present only under the alternative. Biometrika, 64(2), 247-254. Deng, Y. (2018). Estimation for the spatial autoregressive threshold model. Economics Letters, 171, 172-175. Fleishman, A. I. (1978). A method for simulating non-normal distributions. Psychometrika, 43(4), 521-532. Hall, P., and Heyde, C. C. (1980). Martingale limit theory and its application. Academic press. Hansen, B. E. (1996). Inference when a nuisance parameter is not identified under the null hypothesis. Econometrica, 64(2), 413-430. Hansen, B. E. (2000). Sample splitting and threshold estimation. Econometrica, 68(3), 575-603. Kelejian, H. H., and Prucha, I. R. (1998). A generalized spatial two-stage least squares procedure for estimating a spatial autoregressive model with autoregressive disturbances. The Journal of Real Estate Finance and Economics, 17(1), 99-121. Kelejian, H. H., and Prucha, I. R. (1999). A generalized moments estimator for the autoregressive parameter in a spatial model. International economic review, 40(2), 509-533. Kim, J., and Pollard, D. (1990). Cube root asymptotics. The Annals of Statistics, 18(1), 191-219. Lee, L. F. (2004). Asymptotic distributions of quasi-maximum likelihood estimators for spatial autoregressive models. Econometrica, 1899-1925. Lee, L. F., and Yu, J. (2010). Estimation of spatial autoregressive panel data models with fixed effects. Journal of Econometrics, 154(2), 165-185. Lee, S., Seo, M. H., and Shin, Y. (2011). Testing for threshold effects in regression models. Journal of the American Statistical Association, 106(493), 220-231. Li, K. (2017). Fixed-effects dynamic spatial panel data models and impulse response analysis. Journal of Econometrics, 198(1), 102-121. Li, K. (2018). Spatial panel data models with structual change. MPRA working paper No.85388. Lin, X. (2010). Identifying peer effects in student academic achievement by spatial autoregressive models with group unobservables. Journal of Labor Economics, 28(4), 825-860. Manski, C. F. (1993). Identification of endogenous social effects: The reflection problem. The review of economic studies, 60(3), 531-542. Marcucci, J., and Quagliariello, M. (2009). Asymmetric effects of the business cycle on bank credit risk. Journal of Banking \& Finance, 33(9), 1624-1635. Masanjala, W. H., and Papageorgiou, C. (2004). The Solow model with CES technology: nonlinearities and parameter heterogeneity. Journal of Applied Econometrics, 19(2), 171-201. Miao, K., Li, K., and Su, L. (2020). Threshold panel data model with interactive effects. Journal of Econometrics, 219 (1), 137-170. Pukelshim, F. (1980). Multilinear estimation of skewness and kutosis in linear models. Metrika, 27(1), 103-113. Seo, M. H., and Shin, Y. (2016). Dynamic panels with threshold effect and endogeneity. Journal of Econometrics, 195(2), 169-186. Su, L., and Xu, P. (2017). Common threshold in quantile regressions with an application to pricing for reputation. Econometric Reviews, 1-37. Tong, H. (1978). On a threshold model. In: Chen, C, (ed.) Pattern Recognition and Signal Processing. NATO ASI Series E: Applied Sc. (29). Sijthoff \& Noordhoff, Netherlands, pp. 575-586. ISBN 9789028609785 Tsay, R. S. (1989). Testing and modeling threshold autoregressive processes. Journal of the American statistical association, 84(405), 231-240. Tsay, R. S. (1998). Testing and modeling multivariate threshold models. Journal of the American Statistical Association, 93(443), 1188-1202. Ullah, A. (2004). Finite sample econometrics. Oxford University Press. Utev, S., and Peligrad, M. (2003). Maximal inequalities and an invariance principle for a class of weakly dependent random variables. Journal of Theoretical Probability, 16(1), 101-115. Van Der Vaart A. W., and Wellner J. A. (1996). Weak Convergence and Empirical Processes with Application to Statistics. Springer. Wiens, D. P. (1992). On moments of quadratic forms in non-spherically distributed variables. Statistics: a journal of statistical and applied statistics, 23(3), 265-270. Yu, J., de Jong, R., and Lee, L. F. (2008). Quasi-maximum likelihood estimators for spatial dynamic panel data with fixed effects when both n and T are large. Journal of Econometrics, 146(1), 118-134. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/113568 |