Bekirova, Olga and Zubarev, Andrey (2022): Макроэкономические факторы банкротства компаний обрабатывающей отрасли в Российской Федерации.
Preview |
PDF
MPRA_paper_114968.pdf Download (306kB) | Preview |
Abstract
The paper presents the results of an econometric assessment of probabilistic default models on a sample of medium-sized manufacturing companies in Russia for the period from 2012 to 2020. Characteristics of the macroeconomic environment were included in the models. The inclusion of the real effective exchange rate, the growth rate of the exchange rate, the key interest rate or the price of Brent oil in real terms lead to an increase in the forecast power of the base model with internal factors only. The growth in the key interest rate and the price of oil increases the probability of a corporate default.
Item Type: | MPRA Paper |
---|---|
Original Title: | Макроэкономические факторы банкротства компаний обрабатывающей отрасли в Российской Федерации |
English Title: | Macroeconomic Factors of Corporate Bankruptcy in the Manufacturing Sector in the Russian Federation |
Language: | Russian |
Keywords: | bankruptcies; probabilistic models; logistic regression; macroeconomic environment; external factors |
Subjects: | C - Mathematical and Quantitative Methods > C2 - Single Equation Models ; Single Variables > C25 - Discrete Regression and Qualitative Choice Models ; Discrete Regressors ; Proportions ; Probabilities C - Mathematical and Quantitative Methods > C5 - Econometric Modeling > C51 - Model Construction and Estimation G - Financial Economics > G3 - Corporate Finance and Governance > G33 - Bankruptcy ; Liquidation L - Industrial Organization > L6 - Industry Studies: Manufacturing > L60 - General |
Item ID: | 114968 |
Depositing User: | Olga Bekirova |
Date Deposited: | 20 Oct 2022 07:46 |
Last Modified: | 21 Oct 2022 21:51 |
References: | Beaver W. H. Financial ratios as predictors of failure // Journal of accounting research. 1966. pp. 71-111. Altman E. I. Financial ratios, discriminant analysis and the prediction of corporate bankruptcy // The journal of finance. 1968. Vol. 23. No. 4. pp. 589-601. Ohlson J. A. Financial ratios and the probabilistic prediction of bankruptcy // Journal of accounting research. 1980. pp. 109-131. Barboza F., Kimura H., Altman E. Machine learning models and bankruptcy prediction // Expert Systems with Applications. 2017. Vol. 83. pp. 405-417. Lohmann C., Ohliger T. Using accounting‐based information on young firms to predict bankruptcy // Journal of Forecasting. 2019. Vol. 38. No. 8. pp. 803-819. Nehrebecka N. COVID-19: stress-testing non-financial companies: a macroprudential perspective. The experience of Poland // Eurasian Economic Review. 2021. Vol. 11. No. 2. pp. 283-319. Тотьмянина К.М. Оценка вероятности дефолта промышленных компаний на основе финансовых показателей // Финансовая аналитика: проблемы и решения. 2011. № 11. С. 59-68. Сальников В. А., Могилат А. Н., Маслов И. Ю. Стресс-тестирование компаний реального сектора для России: первый подход (методологические аспекты) // Журнал Новой экономической ассоциации. 2012. Т. 16. № 4. С. 46-70. Демешев Б. Б., Тихонова А. С. Прогнозирование банкротства российских компаний: межотраслевое сравнение // Экономический журнал Высшей школы экономики. 2014. Т. 18. № 3. С. 359-386. Донец С. А., Могилат А. Н. Кредитование и финансовая устойчивость российских промышленных компаний: микроэкономические аспекты анализа // Деньги и кредит. 2017. № 7. С. 41-51. Virolainen K. Macro stress testing with a macroeconomic credit risk model for Finland // Bank of Finland Research Discussion Paper. 2004. No. 18. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/114968 |