Finke, Jonas and Bertsch, Valentin (2022): Implementing a highly adaptable method for the multi-objective optimisation of energy systems.
Preview |
PDF
MPRA_paper_115504.pdf Download (1MB) | Preview |
Abstract
In order to mitigate climate change, the energy sector undergoes a transformation towards a climate-neutral future based on renewable energy sources. Energy system models generate insights and support decision making for this transformation. In the face of, e.g., growingly complex and important environmental assessments and stakeholder structures, considering multiple objectives in these models becomes essential to realistically reflect existing interests. However, there is a lack of highly adaptable energy system models incorporating multiple objectives. We present an implementation of the augmented epsilon-constraint method with the highly adaptable energy system optimisation framework Backbone. It enables the simultaneous optimisation of multiple objectives, such as the minimisation of costs, CO2 emissions or self-sufficiency for a broad range of energy systems including different sectors and scales. For this purpose, new objective functions and constraints are implemented in Backbone. They are used by an external algorithm in a sequence of parallelised optimisations to cope with the complexity of real-world applications. The method is adaptable to further objectives and scalable to large and complex systems. Applications to the Western and Southern European power sector in 2050 and a sector-coupled mixed- integer household-level model demonstrate its benefits and adaptability. Pareto fronts, technology use and trade-offs are analysed and quantified. In the European power sector, emission reductions of up to 90 % can be achieved at marginal CO2 abatement costs of below 100 EUR/(t CO2). For the household, energy imports from the public grids can be reduced by 70 % at 20 % higher cost and average cost of self-sufficiency of 2.6 ct/kWh. We expect that the presented methods and models reveal new valuable insights to modellers and decision makers.
Item Type: | MPRA Paper |
---|---|
Original Title: | Implementing a highly adaptable method for the multi-objective optimisation of energy systems |
Language: | English |
Keywords: | Energy system modeling; Multi-objective optimization; Renewable energy; Energy planning; Pareto front; Trade-off |
Subjects: | C - Mathematical and Quantitative Methods > C6 - Mathematical Methods ; Programming Models ; Mathematical and Simulation Modeling C - Mathematical and Quantitative Methods > C6 - Mathematical Methods ; Programming Models ; Mathematical and Simulation Modeling > C61 - Optimization Techniques ; Programming Models ; Dynamic Analysis Q - Agricultural and Natural Resource Economics ; Environmental and Ecological Economics > Q4 - Energy Q - Agricultural and Natural Resource Economics ; Environmental and Ecological Economics > Q4 - Energy > Q41 - Demand and Supply ; Prices Q - Agricultural and Natural Resource Economics ; Environmental and Ecological Economics > Q4 - Energy > Q48 - Government Policy |
Item ID: | 115504 |
Depositing User: | Prof. Dr. Valentin Bertsch |
Date Deposited: | 30 Nov 2022 14:51 |
Last Modified: | 30 Nov 2022 14:51 |
References: | DeCarolis, J. F. (2011). Using modeling to generate alternatives (MGA) to expand our thinking on energy futures. Energy Economics, 33 , 145–152. doi:10.1016/j.eneco.2010.05.002. DeCarolis, J. F., Babaee, S., Li, B., & Kanungo, S. (2016). Modelling to generate alternatives with an energy system optimization model. Environmental Modelling & Software, 79 , 300–310. doi:10.1016/j.envsoft.2015.11.019. DeCarolis, J. F., Hunter, K., & Sreepathi, S. (2012). The case for repeatable analysis with energy economy optimization models. Energy Economics, 34 , 1845–1853. doi:10.1016/j.eneco.2012.07.004. Doroti ́c, H., Doraˇci ́c, B., Dobravec, V., Pukˇsec, T., Krajaˇci ́c, G., & Dui ́c, N. (2019). Integration of transport and energy sectors in island communities with 100% intermittent renewable energy sources. Renewable and Sustainable Energy Reviews, 99 , 109–124. doi:10.1016/j.rser.2018.09.033. Dufo-L ́opez, R., Bernal-Agust ́ın, J. L., Yusta-Loyo, J. M., Dom ́ınguez-Navarro, J. A., Ram ́ırez-Rosado, I. J., Lujano, J., & Aso, I. (2011). Multi-objective optimization minimizing cost and life cycle emissions of stand-alone PV–wind–diesel systems with batteries storage. Applied Energy, 88 , 4033–4041. doi:10.1016/j.apenergy.2011.04.019. E3MLab (2016). PRIMES Model: Version 6, 2016–2017: Technical Report. Eisenf ̈uhr, F., Weber, M., & Langer, T. (2010). Rational decision making. Berlin and London: Springer. El-Zonkoly, A. M. (2011). Optimal placement of multi-distributed generation units including different load models using particle swarm optimisation. IET Generation, Transmission & Distribution, 5 , 760. doi:10.1049/iet-gtd.2010.0676. Elliston, B., Riesz, J., & MacGill, I. (2016). What cost for more renewables? The incremental cost of renewable generation – An Australian National Electricity Market case study. Renewable Energy, 95 , 127–139. doi:10.1016/j.renene.2016.03.080. Energy Exemplar (no date). PLEXOS®: The Unified Energy Market Simulation Platform. URL: https://www.energyexemplar.com/plexos [Accessed 23 December 2021]. Enevoldsen, P., & Sovacool, B. K. (2016). Examining the social acceptance of wind energy: Practical guidelines for onshore wind project development in France. Renewable and Sustainable Energy Reviews, 53 , 178–184. doi:10.1016/j.rser.2015.08.041. European Commission (2019). National energy and climate plans (NECPs): Final NECPs. URL: https://ec.europa.eu/energy/topics/energy-strategy/national-energy-climate-plans_en [Accessed 7 September 2021]. European Commission (2020a). Communication from the Commission to the European Parliament, the Council, the European Economic and Social Commitee and the Committee of the Regions: Stepping up Europe’s 2030 climate ambition. Investing in a climate-neutral future for the benefit of our people: COM(2020) 562 final. URL: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52020DC0562&from=EN [Accessed 28 January 2021]. European Commission (2020b). Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions: An EU-wide assessment of National Energy and Climate Plans. Driving forward the green transition and promoting economic recovery through integrated energy and climate planning: COM(2020) 564 final. URL: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX: 52020DC0564&from=EN [Accessed 05 September 2021]. EUROSTAT (2017). Greenhouse gas emission statistics. URL: http://ec.europa.eu/eurostat/statistics-explained/index.php/Greenhouse_gas_emission_statistics [Accessed 23 December 2021]. Fadaee, M., & Radzi, M. (2012). Multi-objective optimization of a stand-alone hybrid renewable energy system by using evolutionary algorithms: A review. Renewable and Sustainable Energy Reviews, 16 , 3364–3369. doi:10.1016/j.rser.2012.02.071. Fazlollahi, S., Bungener, S. L., Becker, G., & Mar ́echal, F. (2012). Multi-Objectives, Multi-Period Optimization of district heating networks Using Evolutionary Algorithms and Mixed Integer Linear Programming (MILP). In I. D. L. Bogle, & M. Fairweather (Eds.), Computer Aided Chemical Engineering : 22 European Symposium on Computer Aided Process Engineering (pp. 262–266). Elsevier volume 30. doi:10.1016/B978-0-444-59519-5.50053-8. Fesanghary, M., Asadi, S., & Geem, Z. W. (2012). Design of low-emission and energy-efficient residential buildings using a multi-objective optimization algorithm. Building and Environment, 49 , 245–250. doi:10.1016/j.buildenv.2011.09.030. Fitiwi, D. Z., Lynch, M., & Bertsch, V. (2020). Power system impacts of community acceptance policies for renewable energy deployment under storage cost uncertainty. Renewable Energy, 156 , 893–912. doi:10.1016/j.renene.2020.03.110. Forschungsstelle f ̈ur Energiewirtschaft e.V. (FfE) (2020a). Synthetic Sample Electric Load Pro- file (Three-Phase) by Household Types (Germany). URL: http://opendata.ffe.de/dataset/ synthetic-sample-electric-load-profile-three-phase-by-household-types-germany/. Forschungsstelle f ̈ur Energiewirtschaft e.V. (FfE) (2020b). Synthetic Sample Thermal Load Profile by Household Types (Germany). URL: http://opendata.ffe.de/dataset/ synthetic-sample-thermal-load-profile-by-household-types-germany/. Fraunhofer ISI (2021). enertile®. URL: https://www.enertile.eu/enertile-en/ [Accessed 23 December 2021]. Fuss, M., & Xu, L. (2021). Unintended Environmental Impacts at Local and Global Scale—Trade-Offs of a Low-Carbon Electricity System. In D. M ̈ost, S. Schreiber, A. Herbst, M. Jakob, A. Martino, & W.-R. Poganietz (Eds.), The Future European Energy System: Renewable Energy, Flexibility Options and Technological Progress (pp. 237–255). Cham: Springer International Publishing. doi:10.1007/978-3-030-60914-6_13. Gabrielli, P., Gazzani, M., Martelli, E., & Mazzotti, M. (2018). Optimal design of multi-energy systems with seasonal storage. Applied Energy, 219 , 408–424. doi:10.1016/j.apenergy.2017.07.142. Gerhardt, N., Sandau, F., Scholz, A., Hahn, H., Schumacher, P., Sager, C., Bergk, F., K ̈amper, C., Kn ̈orr, W., Kr ̈ack, J., & et al. (2015). Interaktion EE-Strom, W ̈arme und Verkehr: Endbericht: Technical Report. Gils, H. C., Scholz, Y., Pregger, T., Luca de Tena, D., & Heide, D. (2017). Integrated modelling of variable renewable energy-based power supply in Europe. Energy, 123 , 173–188. doi:10.1016/j.energy.2017.01.115. Hall, L. M., & Buckley, A. R. (2016). A review of energy systems models in the UK: Prevalent usage and categorisation. Applied Energy, 169 , 607–628. doi:10.1016/j.apenergy.2016.02.044. Hauff, J., Heider, C., Arms, H., Gerber, J., & Schilling, M. (2011). Public acceptance as a mainstay of energy policy planning; Gesellschaftliche Akzeptanz als Saeule der energiepolitischen Zielsetzung. ET, Energiewirtschaftliche Tagesfragen, 61 . Hauser, P., Heinrichs, H. U., Gillessen, B., & M ̈uller, T. (2018). Implications of diversification strategies in the European natural gas market for the German energy system. Energy, 151 , 442–454. doi:10.1016/j.energy.2018.03.065. Heaps, C. G. (2021). LEAP: The Low Emission Analysis Platform: [Software version: 2020.1.55]. URL: https://leap.sei.org [Accessed 23 December 2021]. Helist ̈o, N., Kiviluoma, J., Holttinen, H., Lara, J. D., & Hodge, B.-M. (2019a). Including operational aspects in the planning of power systems with large amounts of variable generation: A review of modeling approaches. Wiley Interdisciplinary Reviews: Energy and Environment, 8 , e341. doi:10.1002/wene.341. Helist ̈o, N., Kiviluoma, J., Ik ̈aheimo, J., Rasku, T., Rinne, E., O’Dwyer, C., Li, R., & Flynn, D. (2019b). Backbone—An Adaptable Energy Systems Modelling Framework. Energies, 12 , 3388. doi:10.3390/en12173388. Helist ̈o, N., Kiviluoma, J., Morales-Espa ̃na, G., & O’Dwyer, C. (2021). Impact of operational details and temporal representations on investment planning in energy systems dominated by wind and solar. Applied Energy, 290 , 116712. doi:10.1016/j.apenergy.2021.116712. Henning, H.-M., & Palzer, A. (2014). A comprehensive model for the German electricity and heat sector in a future energy system with a dominant contribution from renewable energy technologies—Part I: Methodology. Renewable and Sustainable Energy Reviews, 30 , 1003–1018. doi:10.1016/j.rser.2013.09.012. Hilpert, S., Kaldemeyer, C., Krien, U., G ̈unther, S., Wingenbach, C., & Plessmann, G. (2017a). The Open Energy Modelling Framework (oemof ) - A novel approach in energy system modelling. doi:10.20944/preprints201706.0093.v1. Hilpert, S., Kaldemeyer, C., Wiese, F., & Plessmann, G. (2017b). A Qualitative Evaluation Approach for Energy System Modelling Software—Case Study Results for the Open Energy Modelling Framework (Oemof ). doi:10.20944/preprints201708.0069.v1. Hombach, L. E., & Walther, G. (2015). Pareto-efficient legal regulation of the (bio)fuel market using a bi-objective optimization model. European Journal of Operational Research, 245 , 286–295. doi:10.1016/j.ejor.2015.02.039. H ̈orsch, J., Hofmann, F., Schlachtberger, D., & Brown, T. (2018). PyPSA-Eur: An Open Optimisation Model of the European Transmission System. Energy Strategy Reviews, 22 , 207–215. doi:10.1016/j.esr.2018.08.012. Howells, M., Rogner, H., Strachan, N., Heaps, C., Huntington, H., Kypreos, S., Hughes, A., Silveira, S., DeCarolis, J., Bazillian, M., & Roehrl, A. (2011). OSeMOSYS: The Open Source Energy Modeling System. Energy Policy, 39 , 5850–5870. doi:10.1016/j.enpol.2011.06.033. Huckebrink, D., & Bertsch, V. (2021). Integrating Behavioural Aspects in Energy System Modelling—A Review. Energies, 14 , 4579. doi:10.3390/en14154579. Hunter, K., Sreepathi, S., & DeCarolis, J. F. (2013). Modeling for insight using Tools for Energy Model Optimization and Analysis (Temoa). Energy Economics, 40 , 339–349. doi:10.1016/j.eneco.2013.07.014. IIASA (2012). Model for Energy Supply Strategy Alternatives and their General Environmental Impact (MESSAGE). URL: http://webarchive.iiasa.ac.at/Research/ENE/model/message.html [Accessed 23 December 2021]. Ik ̈aheimo, J., Weiss, R., Kiviluoma, J., Pursiheimo, E., & Lindroos, T. J. (2022). Impact of power-to-gas on the cost and design of the future low-carbon urban energy system. Applied Energy, 305 , 117713. doi:10.1016/j.apenergy.2021.117713. Intergovernmental Panel on Climate Change (2014). Climate change 2014: Mitigation of climate change Working Group III contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. New York NY: Cambridge University Press. doi:10.1017/CBO9781107415416. Jain, H., & Deb, K. (2014). An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point Based Non-dominated Sorting Approach, Part II: Handling Constraints and Extending to an Adaptive Approach. IEEE Transactions on Evolutionary Computation, 18 , 602–622. doi:10.1109/TEVC.2013.2281534. Junne, T., Simon, S., Buchgeister, J., Saiger, M., Baumann, M., Haase, M., Wulf, C., & Naegler, T. (2020). Environmental Sustainability Assessment of Multi-Sectoral Energy Transformation Pathways: Methodological Approach and Case Study for Germany. Sustainability, 12 , 8225. doi:10.3390/su12198225. Katsigiannis, Y. A., Georgilakis, P. S., & Karapidakis, E. S. (2010). Multiobjective genetic algorithm solution to the optimum economic and environmental performance problem of small autonomous hybrid power systems with renewables. IET Renewable Power Generation, 4 , 404. doi:10.1049/iet-rpg.2009.0076. Kirchem, D., Lynch, M. ́A., Bertsch, V., & Casey, E. (2020). Modelling demand response with process models and energy systems models: Potential applications for wastewater treatment within the energy-water nexus. Applied Energy, 260, 114321. doi:10.1016/j.apenergy.2019.114321. Komuˇsanac, I., ́Cosi ́c, B., & Dui ́c, N. (2016). Impact of high penetration of wind and solar PV generation on the country power system load: The case study of Croatia. Applied Energy, 184 , 1470–1482. doi:10.1016/j.apenergy.2016.06.099. Lashkar Ara, A., Kazemi, A., Gahramani, S., & Behshad, M. (2012). Optimal reactive power flow using multi-objective mathematical programming. Scientia Iranica, 19 , 1829–1836. doi:10.1016/j.scient.2012.07.010. Limleamthong, P., & Guill ́en-Gos ́albez, G. (2017). Rigorous analysis of Pareto fronts in sustainability studies based on bilevel optimization: Application to the redesign of the UK electricity mix. Journal of Cleaner Production, 164 , 1602–1613. doi:10.1016/j.jclepro.2017.06.134. Lindroos, T. J., M ̈aki, E., Koponen, K., Hannula, I., Kiviluoma, J., & Raitila, J. (2021). Replacing fossil fuels with bioenergy in district heating – Comparison of technology options. Energy, 231 , 120799. doi:10.1016/j.energy.2021.120799. Loulou, R., Goldstein, G., & Noble, K. (2004). Documentation for the MARKAL Family of Models. URL: https://unfccc.int/resource/cd_roms/na1/mitigation/Module_5/Module_5_1/b_tools/MARKAL/MARKAL_Manual.pdf [Accessed 23 December 2021]. Loulou, R., Remne, U., Kanudia, A., Lehtila, A., & Goldstein, G. (2005). Documentation for the TIMES model. Lund, H. (2014). Chapter 4 - Tool: The EnergyPLAN Energy System Analysis Model. In H. H. Lund (Ed.), Renewable energy systems (pp. 53–78). Amsterdam, Netherlands and Boston, Massachusetts: Academic Press. doi:10.1016/B978-0-12-410423-5.00004-3. Lund, H., & Kempton, W. (2008). Integration of renewable energy into the transport and electricity sectors through V2G. Energy Policy, 36 , 3578–3587. doi:10.1016/j.enpol.2008.06.007. Mahbub, M. S., Cozzini, M., Østergaard, P. A., & Alberti, F. (2016). Combining multi-objective evolutionary algorithms and descriptive analytical modelling in energy scenario design. Applied Energy, 164 , 140–151. doi:10.1016/j.apenergy.2015.11.042. Mahbub, M. S., Viesi, D., Cattani, S., & Crema, L. (2017). An innovative multi-objective optimization approach for long-term energy planning. Applied Energy, 208 , 1487–1504. doi:10.1016/j.apenergy.2017.08.245. Mavrotas, G. (2009). Effective implementation of the ε-constraint method in Multi-Objective Mathematical Programming problems. Applied Mathematics and Computation, 213 , 455–465. doi:10.1016/j.amc.2009.03.037. Mavrotas, G., & Florios, K. (2013). An improved version of the augmented ε-constraint method (AUGMECON2) for finding the exact pareto set in multi-objective integer programming problems. Applied Mathematics and Computation, 219, 9652–9669. doi:10.1016/j.amc.2013.03.002. Mazzeo, D., Baglivo, C., Matera, N., Congedo, P. M., & Oliveti, G. (2020). A novel energy-economic-environmental multi-criteria decision-making in the optimization of a hybrid renewable system. Sustainable Cities and Society, 52 , 101780. doi:10.1016/j.scs.2019.101780. Mehigan, L., Deane, J. P., Gallach ́oir, B., & Bertsch, V. (2018). A review of the role of distributed generation (DG) in future electricity systems. Energy, 163 , 822–836. doi:10.1016/j.energy.2018.08.022. Miettinen, K. (1999). Nonlinear multiobjective optimization volume ISOR12 of International Series in Operations Research & Management Science. Boston and London: Kluwer Academic Publishers. Miettinen, K. (2008). Introduction to Multiobjective Optimization: Noninteractive Approaches. In J. Branke, K. Deb, K. Miettinen, & R. Slowiski (Eds.), Multiobjective Optimization Lecture Notes in Computer Science (pp. 1–26). Berlin, Heidelberg: Springer Berlin Heidelberg. doi:10.1007/978-3-540-88908-3_1. Miettinen, K., Hakanen, J., & Podkopaev, D. (2016). Interactive Nonlinear Multiobjective Optimization Methods. In S. Greco, M. Ehrgott, & J. R. Figueira (Eds.), Multiple Criteria Decision Analysis International Series in Operations Research & Management Science (pp. 927–976). New York, N.Y: Springer New York. doi:10.1007/978-1-4939-3094-4_22. Millward-Hopkins, J., & Purnell, P. (2019). Circulating blame in the circular economy: The case of wood-waste biofuels and coal ash. Energy Policy, 129 , 168–172. doi:10.1016/j.enpol.2019.02.019. Mohammadkhani, N., Sedighizadeh, M., & Esmaili, M. (2018). Energy and emission management of CCHPs with electric and thermal energy storage and electric vehicle. Thermal Science and Engineering Progress, 8 , 494–508. doi:10.1016/j.tsep.2018.10.005. Monz, M., K ̈ufer, K. H., Bortfeld, T. R., & Thieke, C. (2008). Pareto navigation: algorithmic foundation of interactive multi-criteria IMRT planning. Physics in Medicine & Biology, 53 , 985–998. doi:10.1088/0031-9155/53/4/011. Morton, A., & Fasolo, B. (2009). Behavioural decision theory for multi-criteria decision analysis: a guided tour. Journal of the Operational Research Society, 60 , 268–275. doi:10.1057/palgrave.jors.2602550. Morvaj, B., Evins, R., & Carmeliet, J. (2016). Optimising urban energy systems: Simultaneous system sizing, operation and district heating network layout. Energy, 116 , 619–636. doi:10.1016/j.energy.2016.09.139. Morvaj, B., Evins, R., & Carmeliet, J. (2017). Decarbonizing the electricity grid: The impact on urban energy systems, distribution grids and district heating potential. Applied Energy, 191 , 125–140. doi:10.1016/j.apenergy.2017.01.058. M ̈ost, D., & Keles, D. (2010). A survey of stochastic modelling approaches for liberalised electricity markets. European Journal of Operational Research, 207 , 543–556. doi:10.1016/j.ejor.2009.11.007. Nikas, A., Fountoulakis, A., Forouli, A., & Doukas, H. (2020). A robust augmented ε-constraint method (AUGMECON-R) for finding exact solutions of multi-objective linear programming problems. Operational Research, (pp. 1–42). doi:10.1007/s12351-020-00574-6. Niknam, T., Meymand, H. Z., Mojarrad, H. D., & Aghaei, J. (2011). Multi-objective daily operation management of distribution network considering fuel cell power plants. IET Renewable Power Generation, 5 , 356. doi:10.1049/iet-rpg.2010.0190. O’Dwyer, C., & Flynn, D. (2019). Impact of flexibility service requirements on investment decisions and costs. In Electrical and Electronic Engineering Research Collection, The 18th International Workshop on Large-Scale Integration of Wind Power into Power Systems as well as on Transmission Networks for Offshore Wind Power Plants. URL: https://researchrepository.ucd.ie/handle/10197/11402 [Accessed 23 December 2021]. Oree, V., Sayed Hassen, S. Z., & Fleming, P. J. (2017). Generation expansion planning optimisation with renewable energy integration: A review. Renewable and Sustainable Energy Reviews, 69 , 790–803. doi:10.1016/j.rser.2016.11.120. Orths, A., Anderson, C. L., Brown, T., Mulhern, J., Pudjianto, D., Ernst, B., O’Malley, M., McCalley, J., & Strbac, G. (2019). Flexibility From Energy Systems Integration: Supporting Synergies Among Sectors. IEEE Power and Energy Magazine, 17, 67–78. doi:10.1109/MPE.2019.2931054. Palzer, A., & Henning, H.-M. (2014). A comprehensive model for the German electricity and heat sector in a future energy system with a dominant contribution from renewable energy technologies – Part II: Results. Renewable and Sustainable Energy Reviews, 30, 1019–1034. doi:10.1016/j.rser.2013.11.032. Pelet, X., Favrat, D., & Leyland, G. (2005). Multiobjective optimisation of integrated energy systems for remote communities considering economics and CO2 emissions. International Journal of Thermal Sciences, 44, 1180–1189. doi:10.1016/j.ijthermalsci.2005.09.006. Pfenninger, S., DeCarolis, J., Hirth, L., Quoilin, S., & Staffell, I. (2017). The importance of open data and software: Is energy research lagging behind? Energy Policy, 101, 211–215. doi:10.1016/j.enpol.2016.11.046. Pfenninger, S., Hawkes, A., & Keirstead, J. (2014). Energy systems modeling for twenty-first century energy challenges. Renewable and Sustainable Energy Reviews, 33, 74–86. doi:10.1016/j.rser.2014.02.003. Pfenninger, S., & Pickering, B. (2018). Calliope: a multi-scale energy systems modelling framework. Journal of Open Source Software, 3, 825. doi:10.21105/joss.00825. Pfenninger, S., & Staffell, I. (2016). Long-term patterns of european pv output using 30 years of validated hourly reanalysis and satellite data. Energy, 114, 1251–1265. URL: https://www.sciencedirect.com/science/article/pii/ S0360544216311744. doi:https://doi.org/10.1016/j.energy.2016.08.060. Pietzcker, R. C., Osorio, S., & Rodrigues, R. (2021). Tightening EU ETS targets in line with the European Green Deal: Impacts on the decarbonization of the EU power sector. Applied Energy, 293, 116914. doi:10.1016/j.apenergy.2021.116914. Powell, W. B., George, A., Sim ̃ao, H., Scott, W., Lamont, A., & Stewart, J. (2012). SMART: A Stochastic Multiscale Model for the Analysis of Energy Resources, Technology, and Policy. INFORMS Journal on Computing, 24 , 665–682. doi:10.1287/ijoc.1110.0470. Prina, M. G., Casalicchio, V., Kaldemeyer, C., Manzolini, G., Moser, D., Wanitschke, A., & Sparber, W. (2020a). Multi-objective investment optimization for energy system models in high temporal and spatial resolution. Applied Energy, 264, 114728. doi:10.1016/j.apenergy.2020.114728. Prina, M. G., Cozzini, M., Garegnani, G., Manzolini, G., Moser, D., Filippi Oberegger, U., Pernetti, R., Vaccaro, R., & Sparber, W. (2018). Multi-objective optimization algorithm coupled to EnergyPLAN software: The EPLANopt model. Energy, 149 , 213–221. doi:10.1016/j.energy.2018.02.050. Prina, M. G., Lionetti, M., Manzolini, G., Sparber, W., & Moser, D. (2019). Transition pathways optimization methodology through EnergyPLAN software for long-term energy planning. Applied Energy, 235, 356–368. doi:10.1016/j.apenergy.2018.10.099. Prina, M. G., Manzolini, G., Moser, D., Nastasi, B., & Sparber, W. (2020b). Classification and challenges of bottom-up energy system models - A review. Renewable and Sustainable Energy Reviews, 129, 109917. doi:10.1016/j.rser.2020.109917. Prina, M. G., Manzolini, G., Moser, D., Vaccaro, R., & Sparber, W. (2020c). Multi-Objective Optimization Model EPLANopt for Energy Transition Analysis and Comparison with Climate-Change Scenarios. Energies, 13 , 3255. doi:10.3390/en13123255. Pursiheimo, E., Holttinen, H., & Koljonen, T. (2017). Path toward 100% renewable energy future and feasibility of power–to–gas technology in Nordic countries. IET Renewable Power Generation, 11, 1695–1706. doi:10.1049/iet-rpg.2017.0021. Rabbani, M., Saravi, N. A., Farrokhi-Asl, H., Lim, S. F. W., & Tahaei, Z. (2018). Developing a sustainable supply chain optimization model for switchgrass-based bioenergy production: A case study. Journal of Cleaner Production, 200, 827–843. doi:10.1016/j.jclepro.2018.07.226. Rasku, T., & Kiviluoma, J. (2019). A Comparison of Widespread Flexible Residential Electric Heating and Energy Efficiency in a Future Nordic Power System. Energies, 12, 5. doi:10.3390/en12010005. Rasku, T., Miettinen, J., Rinne, E., & Kiviluoma, J. (2020). Impact of 15-day energy forecasts on the hydro-thermal scheduling of a future Nordic power system. Energy, 192, 116668. doi:10.1016/j.energy.2019.116668. Razm, S., Nickel, S., & Sahebi, H. (2019). A multi-objective mathematical model to redesign of global sustainable bioenergy supply network. Computers & Chemical Engineering, 128, 1–20. doi:10.1016/j.compchemeng.2019.05.032. Ren, H., Zhou, W., Nakagami, K., Gao, W., & Wu, Q. (2010). Multi-objective optimization for the operation of distributed energy systems considering economic and environmental aspects. Applied Energy, 87, 3642–3651. doi:10.1016/j.apenergy.2010.06.013. Roddis, P., Carver, S., Dallimer, M., Norman, P., & Ziv, G. (2018). The role of community acceptance in planning outcomes for onshore wind and solar farms: An energy justice analysis. Applied Energy, 226, 353–364. doi:10.1016/j.apenergy.2018.05.087. Rodrigues, S., Bauer, P., & Bosman, P. A. (2016). Multi-objective optimization of wind farm layouts – Complexity, constraint handling and scalability. Renewable and Sustainable Energy Reviews, 65, 587–609. doi:10.1016/j.rser.2016.07.021. Rosen, J. (2008). The future role of renewable energy sources in European electricity supply: A model-based analysis for the EU-15 . KIT Scientific Publishing. doi:10.5445/KSP/1000007531. Sadiqa, A., Gulagi, A., & Breyer, C. (2018). Energy transition roadmap towards 100% renewable energy and role of storage technologies for Pakistan by 2050. Energy, 147 , 518–533. doi:10.1016/j.energy.2018.01.027. Samsatli, S., & Samsatli, N. J. (2015). A general spatio-temporal model of energy systems with a detailed account of transport and storage. Computers & Chemical Engineering, 80 , 155–176. doi:10.1016/j.compchemeng.2015.05.019. Samsatli, S., & Samsatli, N. J. (2018). A multi-objective MILP model for the design and operation of future integrated multi-vector energy networks capturing detailed spatio-temporal dependencies. Applied Energy, 220 , 893–920. doi:10.1016/j.apenergy.2017.09.055. Samsatli, S., Samsatli, N. J., & Shah, N. (2015). BVCM: A comprehensive and flexible toolkit for whole system biomass value chain analysis and optimisation – Mathematical formulation. Applied Energy, 147, 131–160. doi:10.1016/j.apenergy.2015.01.078. Schreiber, S., Z ̈ophel, C., & M ̈ost, D. (2021). Optimal Energy Portfolios in the Electricity Sector: Trade-Offs and Interplay Between Different Flexibility Options. In D. M ̈ost, S. Schreiber, A. Herbst, M. Jakob, A. Martino, & W.-R. Poganietz (Eds.), The Future European Energy System: Renewable Energy, Flexibility Options and Technological Progress (pp. 177–198). Cham: Springer International Publishing. doi:10.1007/978-3-030-60914-6_10. Schwartz, Y., Raslan, R., & Mumovic, D. (2016). Implementing multi objective genetic algorithm for life cycle carbon footprint and life cycle cost minimisation: A building refurbishment case study. Energy, 97, 58–68. doi:10.1016/j.energy.2015.11.056. Sedighizadeh, M., Esmaili, M., & Mohammadkhani, N. (2018). Stochastic multi-objective energy management in residential microgrids with combined cooling, heating, and power units considering battery energy storage systems and plug-in hybrid electric vehicles. Journal of Cleaner Production, 195, 301–317. doi:10.1016/j.jclepro.2018.05.103. Short, W., Sullivan, P., Mai, T., Mowers, M., Uriarte, C., Blair, N., Heimiller, D., & Martinez, A. (2011). Regional Energy Deployment System (ReEDS). doi:10.2172/1031955. Slednev, V., Bertsch, V., & Fichtner, W. (2017). A Multi-objective Time Segmentation Approach for Power Generation and Transmission Models. In K. F. Doerner, I. Ljubic, G. C. Pflug, & G. Tragler (Eds.), Operations Research Proceedings 2015 (pp. 707–714). Cham, Switzerland: Springer. Soroudi, A., & Afrasiab, M. (2012). Binary PSO-based dynamic multi-objective model for distributed generation planning under uncertainty. IET Renewable Power Generation, 6, 67. doi:10.1049/iet-rpg.2011.0028. Sperber, E., Frey, U., & Bertsch, V. (2020). Reduced-order models for assessing demand response with heat pumps – Insights from the German energy system. Energy and Buildings, 223, 110144. doi:10.1016/j.enbuild.2020.110144. St Louis, M. E., & Hess, J. J. (2008). Climate change: impacts on and implications for global health. American Journal of Preventive Medicine, 35 , 527–538. doi:10.1016/j.amepre.2008.08.023. Staffell, I. (no date). 2050 DESSTINEE. URL: https://sites.google.com/site/2050desstinee/ [Accessed 23 December 2021]. Tietze, I., Lazar, L., Hottenroth, H., & Lewerenz, S. (2020). LAEND: A Model for Multi-Objective Investment Optimisation of Residential Quarters Considering Costs and Environmental Impacts. Energies, 13 , 614. doi:10.3390/en13030614. United Nations (2015). Paris Agreement. URL: https://unfccc.int/sites/default/files/english_paris_agreement.pdf [Accessed 28 January 2021]. Unsihuay-Vila, C., Marangon-Lima, J. W., Zambroni de Souza, A. C., & Perez-Arriaga, I. J. (2011). Multistage expansion planning of generation and interconnections with sustainable energy development criteria: A multiobjective model. International Journal of Electrical Power & Energy Systems, 33, 258–270. doi:10.1016/j.ijepes.2010.08.021. Wiecek, M. M., Ehrgott, M., & Engau, A. (2016). Continuous Multiobjective Programming. In S. Greco, M. Ehrgott, & J. R. Figueira (Eds.), Multiple Criteria Decision Analysis International Series in Operations Research & Management Science (pp. 739–815). New York, N.Y: Springer New York. doi:10.1007/978-1-4939-3094-4_18. Wierzbowski, M., Lyzwa, W., & Musial, I. (2016). MILP model for long-term energy mix planning with consideration of power system reserves. Applied Energy, 169, 93–111. doi:10.1016/j.apenergy.2016.02.003. Wiese, F., Bramstoft, R., Koduvere, H., Pizarro Alonso, A., Balyk, O., Kirkerud, J. G., Tveten, ̊A. G., Bolkesjø, T. F., M ̈unster, M., & Ravn, H. (2018). Balmorel open source energy system model. Energy Strategy Reviews, 20, 26–34. doi:10.1016/j.esr.2018.01.003. Xu, L., Fuss, M., Poganietz, W.-R., Jochem, P., Schreiber, S., Zoephel, C., & Brown, N. (2020). An Environmental Assessment Framework for Energy System Analysis (EAFESA): The method and its application to the European energy system transformation. Journal of Cleaner Production, 243, 118614. doi:10.1016/j.jclepro.2019.118614. Yamchi, H. B., Safari, A., & Guerrero, J. M. (2021). A multi-objective mixed integer linear programming model for integrated electricity-gas network expansion planning considering the impact of photovoltaic generation. Energy, 222, 119933. doi:10.1016/j.energy.2021.119933. Yuan, X., Tian, H., Yuan, Y., Huang, Y., & Ikram, R. M. (2015). An extended NSGA-III for solution multi-objective hydro-thermal-wind scheduling considering wind power cost. Energy Conversion and Management, 96, 568–578. doi:10.1016/j.enconman.2015.03.009. Zangeneh, A., Jadid, S., & Rahimi-Kian, A. (2011). A fuzzy environmental-technical-economic model for distributed generation planning. Energy, 36, 3437–3445. doi:10.1016/j.energy.2011.03.048. Zappa, W., Junginger, M., & van den Broek, M. (2019). Is a 100% renewable European power system feasible by 2050? Applied Energy, 233-234, 1027–1050. doi:10.1016/j.apenergy.2018.08.109. Zhang, Q., Mclellan, B. C., Tezuka, T., & Ishihara, K. N. (2012). Economic and environmental analysis of power generation expansion in Japan considering Fukushima nuclear accident using a multi-objective optimization model. Energy, 44, 986–995. doi:10.1016/j.energy.2012.04.051. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/115504 |