Ngomba Bodi, Francis Ghislain and Bikai, Landry (2019): Les prévisions conditionnelles sont-elles plus précises que les prévisions inconditionnelles dans les projections de croissance et d’inflation en zone CEMAC ?
Preview |
PDF
MPRA_paper_116432.pdf Download (1MB) | Preview |
Abstract
This study compares the predictive performance of the conditional forecasting technique against the unconditional technique. The conditional technique consist of taking into account the information available on an endogenous variable over part of the forecast horizon. We develop a Bayesian VAR model with three endogenous, real growth, inflation and monetary growth, in which we condition the evolution of monetary growth by considering three types of scenarios : basic, optimistic and pessimistic. Two main results can be draw from our simulations : (i) the conditional forecasting approach is generally more precise than the unconditional approach ; (ii) the uncertainty around the central forecast is reduced with the conditional forecast technique. These results therefore call on the central bank to adopt the conditional forecasting technique in projections of real growth and inflation ; but also to consider various scenarios on the variable to be conditioned.
Item Type: | MPRA Paper |
---|---|
Original Title: | Les prévisions conditionnelles sont-elles plus précises que les prévisions inconditionnelles dans les projections de croissance et d’inflation en zone CEMAC ? |
English Title: | Should conditional forecasts of inflation and real growth more accurate than unconditional forecasts in CEMAC subregion ? |
Language: | French |
Keywords: | Conditional forecast; bayesian VAR,; scenario analysis; growth and inflation forecasts |
Subjects: | C - Mathematical and Quantitative Methods > C1 - Econometric and Statistical Methods and Methodology: General > C11 - Bayesian Analysis: General C - Mathematical and Quantitative Methods > C5 - Econometric Modeling > C53 - Forecasting and Prediction Methods ; Simulation Methods E - Macroeconomics and Monetary Economics > E3 - Prices, Business Fluctuations, and Cycles > E37 - Forecasting and Simulation: Models and Applications E - Macroeconomics and Monetary Economics > E4 - Money and Interest Rates > E47 - Forecasting and Simulation: Models and Applications |
Item ID: | 116432 |
Depositing User: | Francis Ghislain Ngomba Bodi |
Date Deposited: | 23 Feb 2023 14:24 |
Last Modified: | 24 Feb 2023 14:39 |
References: | Andersson, M.K., Palmqvist, S. et Waggoner, D.F. (2010) ; « DensityConditional forecasts in dynamic multivariate models » : Working Paper Series 247, Sveriges Riksbank. Antolin-Diaz, J., Petrella, I. et Rubio-Ramirez, J.F. (2017) ; « Structural scenario analysis and stress testing with Vector Autoregressions » : Working Papers 2017-13, FEDEA. Bacje, I.W., Brubakk, L., Jore, A.S., Maih, J. et Nicolaisen, J. (2010) ; « Monetary policy analysis in practice : an integrated approcach for conditional forecasting ». Banbura, M., Giannone, D. et Lenza, M. (2015) ; « Conditional forecasts and scenario analysis with vector autoregressions for large cross-sections » : International Journal of Forecasting, Vol 31, pp 739-756. Bikai, J.L. et Ngomba, F.G. (2018) ; « Prévisions de l’inflation et de la croissance en zone CEMAC » : BEAC Working Paper N°10/17. Bloor, C. et Matheson, T. (2011) ; « Real-time conditional forecasts with bayesian VARs : an application to New-Zealand » : The North American Journal of Economics and Finance, Vol 22, pp 26-42. Brazdik, F. et Franta, M. (2017) ; « A BVAR model for forecasting of Czech inflation » : Czech National Bank Working Papers. Camba-Mendes, G. (2012) ; « Conditional forecasts on SVAR models using the Kalman filter » : Economics Letters, Vol 115, pp 376-378. Cespedes, B.J.V, Lima, E.C.R., Maka, A. et Mendonca, M.J.C. (2005) ; « Measuring monetary policy stance in Brazil » : Discussion Papers 1128, Instituto de Pesquisa Economica Aplicada. Christoffel, K., Coenen, G. et Warne, A. (2007) ; « Conditional versus unconditional forecasting with the New Area-Wide Model of the euro area » : MPRA Paper 76759, University Library of Munich, Germany. Doan, T., Litterman, R.B. et Sims, C.A. (1984) ; « Forecasting and conditional projection using realistic prior distribution » : Econometric Review, Vol 3, pp 1-100. Faust, J. et Leeper, E.M. (2005) ; « Forecasts and inflation reports : an evaluation » : in A Conference on Inflation Targeting : Implementation, Communication and Effectiveness, Sveriges Riksbank, Stockholm, pp 10-12. Giannone, D., Lenza, M., Momferatou, D. et Onorante, L. (2014) ; « Short-term inflation projections : a bayesian vector autoregressive approach » : International Journal of Forecasting, Vol 30, pp 635-644. Higgins, P.C., Zha, T. et Zhong, K. (2016) ; « Forecasting China’s economic growth and inflation » : Federal Reserve Bank Atlanta Working Paper N°2016-7. Jarocinski M. (2010) ; « Conditional forecasts and uncertainty about forecast revisions in vector autoregressions » : Economics Letters, Vol 108, pp 257-259. Osterholm, P. et Zettelmeyer, J. (2008) ; « The effect of external conditions on growth in Latin America » : IMF Staff Papers, Vol 55, pp 595-623. Waggoner, D.F. et ZHA, T. (1999) ; « Conditional forecasts in dynamic multivariate models » : The Review of Economics and Statistics, Vol 81, N°4, pp. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/116432 |