Gourdel, Pascal and Le Van, Cuong and Pham, Ngoc-Sang and Tran Viet, Cuong (2023): Hartman-Stampacchia theorem, Gale-Nikaido-Debreu lemma, and Brouwer and Kakutani fixed-point theorems.
Preview |
PDF
MPRA_paper_116541.pdf Download (494kB) | Preview |
Abstract
This paper uses the Hartman-Stampacchia theorems as primary tool to prove the Gale-Nikaido-Debreu lemma. It also establishes a full equivalence circle among the Hartman Stampacchia theorems, the Gale-Nikaido-Debreu lemmas, and Kakutani and Brouwer fixed point theorems.
Item Type: | MPRA Paper |
---|---|
Original Title: | Hartman-Stampacchia theorem, Gale-Nikaido-Debreu lemma, and Brouwer and Kakutani fixed-point theorems |
Language: | English |
Keywords: | Hartman-Stampacchia theorem, Gale-Nikaido-Debreu Lemma, Brouwer fixed points theorem, Kakutani fixed points theorem. |
Subjects: | C - Mathematical and Quantitative Methods > C6 - Mathematical Methods ; Programming Models ; Mathematical and Simulation Modeling C - Mathematical and Quantitative Methods > C6 - Mathematical Methods ; Programming Models ; Mathematical and Simulation Modeling > C60 - General C - Mathematical and Quantitative Methods > C6 - Mathematical Methods ; Programming Models ; Mathematical and Simulation Modeling > C62 - Existence and Stability Conditions of Equilibrium C - Mathematical and Quantitative Methods > C6 - Mathematical Methods ; Programming Models ; Mathematical and Simulation Modeling > C65 - Miscellaneous Mathematical Tools D - Microeconomics > D5 - General Equilibrium and Disequilibrium |
Item ID: | 116541 |
Depositing User: | Cuong TRAN VIET |
Date Deposited: | 01 Mar 2023 08:41 |
Last Modified: | 01 Mar 2023 08:41 |
References: | Aliprantis, C.D., Border, K.C., 2006. Infinite Dimensional Analysis A Hitchhiker’s Guide, third edition. Springer-Verlag Berlin Heidelberg. Arrow, K.J., Debreu, G., 1954. Existence of an equilibrium for a competitive economy. Econometrica 22, 265–290. Barbolla, R., Corchon, L.C., 1989. An elementary proof of the existence of a competitive equilibrium in a special case. The Quarterly Journal of Economics 104, 385–389. Carath´eodory, C., 1907. Uber den variabilitatsbereich der koeffizienten von potenzreihen, die gegebene werte nicht annehmen. Mathematische Annalen 64(1), 95–115. (in German). Cellina, A., 1969. Approximation of set valued functions and fixed point theorems. Annali di Matematica Pura ed Applicata 82, 17–24. Cornet, B., 2020. The Gale–Nikaido–Debreu lemma with discontinuous excess demand. Economic Theory Bulletin 8, 169–180. Debreu, G., 1956. Market equilibrium. Proceedings of the National Academy of Sciences of the United States of America 42, 876–878. Debreu, G., 1959. Theory of Value - An Axiomatic Analysis of Economic Equilibrium. Wiley, New York. Debreu, G., 1982. Existence of competitive equilibrium, in: Arrow, K.J., Intriligator, M.D. (Eds.), Handbook of Mathematical Economics. North Holland. volume 2. chapter 15. Duppe, T., Weintraub, E.R., 2014. Finding equilibrium: Arrow, Debreu, McKenzie and the problem of scientific credit. Princeton University Press, Princeton and Oxford. Florenzano, M., 1981. L’´Equilibre ´economique g´en´eral transitif et intransitif: problemes d’existence. Editions du CNRS. Monographies du s´eminaire d’´econom´etrie. Florenzano, M., 2003. General Equilibrium Analysis: Existence and Optimality Properties of Equilibria. Springer Science+Business Media. Florenzano, M., Le Van, C., 1986. A note on the Gale-Nikaido-Debreu lemma and the existence of general equilibrium. Economics Letters 22, 107–110. Florenzano, M., Le Van, C., 2001. Finite Dimensional Convexity and Optimization. Springer-Verlag Berlin-Heidelberg. Frayss´e, J., 2009. A simple proof of the existence of an equilibrium when the weak axiom holds. Journal of Mathematical Economics 45, 767–769. Gale, D., 1955. The law of supply and demand. Mathematica Scandinavica 3, 155–169. Gale, D., Mas-Colell, A., 1975. An equilibrium existence theorem for a general model without ordered preferences. Journal of Mathematical Economics 2, 9–15. Gale, D., Mas-Colell, A., 1979. Corrections to an equilibrium existence theorem for a general model without ordered preferences. Journal of Mathematical Economics 6, 297–298. Geistdoerfer-Florenzano, M., 1982. The Gale-Nikaido-Debreu lemma and the existence of transitive equilibrium with or without the free-disposal assumption. Journal of Mathematical Economics 9, 113–134. Greenberg, J., 1977. An elementary proof of the existence of a competitive equilibrium with weak gross substitutes. The Quarterly Journal of Economics 91, 513–516. Hartman, P., Stampacchia, G., 1966. On some non-linear elliptic differential-functional equations. Acta Mathematica 115, 271–310. He, W., Yannelis, N., 2017. Equilibria with discontinuous preferences: New fixed point theorems. Journal of Mathematical Analysis and Applications 450, 1421–1433. John, R., 1999. Abraham Wald’s equilibrium existence proof reconsidered. Economic Theory 13, 417–428. Khan, M.A., 2021. On the finding of an equilibrium: Duppe-Weintraud and the problem of scientific credit. Journal of Economic Literature 59, 590–633. Le, T., Le Van, C., Pham, N., Saglam, C., 2022. A direct proof of the Gale–Nikaido–Debreu lemma using Sperner’s lemma. Journal of Optimization Theory and Applications 194, 1072–1080. Ma´ckowiak, P., 2010. The existence of equilibrium without fixed-point arguments. Journal of Mathematical Economics 46, 1194–1199. Maskin, E., Roberts, K., 2008. On the fundamental theorems of general equilibrium. Economic Theory 35, 233–240. McKenzie, L., 1954. On equilibrium in Graham’s model of world trade and other competitive systems. Econometrica 22, 147–161. Michael, E., 1956. Continuous selections. I. Annals of Mathematics 63, 361–382. Nikaidˆo, H., 1956. On the classical multilateral exchange problem. Metroeconomica 8, 135–145. Quah, J.K.H., 2008. The existence of equilibrium when excess demand obeys the weak axiom. Journal of Mathematical Economics 44, 337–343. Tian, G., 2016. On the existence of price equilibrium in ecconomies with excess demand functions. Economic Theory Bulletin 4, 5–16. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/116541 |