Gutierrez-Lythgoe, Antonio (2023): Teletrabajo en Twitter: Análisis mediante Deep Learning.
Preview |
PDF
MPRA_paper_117101.pdf Download (497kB) | Preview |
Abstract
In this article we analyse Twitter users’ perceptions on remote working. To do so, we use artificial intelligence techniques of natural language processing. Specifically, we run a Sentiment Analysis and Latent Dirichlet Allocation (LDA) on a sample of 12,986 tweets related to remote working published in Spanish. Our results show that 21.2% of the tweets present a positive sentiment, 43.5% a negative sentiment and 35.3% a neutral connotation. This article contributes to the application of Machine learning and Deep learning techniques in the study of social sciences.
Item Type: | MPRA Paper |
---|---|
Original Title: | Teletrabajo en Twitter: Análisis mediante Deep Learning |
English Title: | Teleworking on Twitter: Analysis using Deep Learning |
Language: | Spanish |
Keywords: | Artificial Intelligence, Sentiment analysis, Big Data, remote working, telework |
Subjects: | C - Mathematical and Quantitative Methods > C8 - Data Collection and Data Estimation Methodology ; Computer Programs > C88 - Other Computer Software D - Microeconomics > D8 - Information, Knowledge, and Uncertainty > D83 - Search ; Learning ; Information and Knowledge ; Communication ; Belief ; Unawareness J - Labor and Demographic Economics > J2 - Demand and Supply of Labor > J22 - Time Allocation and Labor Supply J - Labor and Demographic Economics > J2 - Demand and Supply of Labor > J23 - Labor Demand |
Item ID: | 117101 |
Depositing User: | Antonio Gutiérrez |
Date Deposited: | 19 Apr 2023 07:19 |
Last Modified: | 19 Apr 2023 07:19 |
References: | Andrade, C., Gillen, M., Molina, J.A. and Wilmarth, M.J. (2022). The social and economic impact of Covid-19 on family functioning and well-being: Where do we go from here? Journal of Family and Economic Issues, 43, 205-212. Baker, M. (2020). Gartner survey reveals 82% of company leaders plan to allow employees to work remotely some of the time. Gartner Survey Reveals, 82. Barbieri, F., Anke, L. E., & Camacho-Collados, J. (2021). XLM-T: Multilingual Language Models in Twitter for Sentiment Analysis and Beyond. http://arxiv.org/abs/2104.12250 Barrero, J. M., Bloom, N., & Davis, S. J. (2021). Why working from home will stick. National Bureau of Economic Research. Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent dirichlet allocation. Journal of machine Learning research, 3(Jan), 993-1022. Bloom, N., Liang, J., Roberts, J., & Ying, Z. J. (2015). Does working from home work? Evidence from a chinese experiment. Quarterly Journal of Economics, 130(1), 165–218. https://doi.org/10.1093/qje/qju032 Charalampous, M., Grant, C. A., Tramontano, C., & Michailidis, E. (2019). Systematically reviewing remote e-workers’ well-being at work: a multidimensional approach. European Journal of Work and Organizational Psychology, 28(1), 51–73. https://doi.org/10.1080/1359432X.2018.1541886 Daneshfar, Z., Asokan-Ajitha, A., Sharma, P., & Malik, A. (2022). Work-from-home (WFH) during COVID-19 pandemic – A netnographic investigation using Twitter data. Information Technology and People. https://doi.org/10.1108/ITP-01-2021-0020 Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of deep bidirectional transformers for language understanding. ArXiv Preprint ArXiv:1810.04805. Dhaoui, C., Webster, C. M., & Tan, L. P. (2017). Social media sentiment analysis: lexicon versus machine learning. Journal of Consumer Marketing. Dubey, A. D., & Tripathi, S. (2020). Analysing the sentiments towards work-from-home experience during COVID-19 pandemic. In Journal of Innovation Management (Vol. 8, Issue 1, pp. 13–19). Universidade do Porto - Faculdade de Engenharia. https://doi.org/10.24840/2183-0606_008.001_0003 Einav, L., & Levin, J. (2014). Economics in the age of big data. Science, 346(6210). https://doi.org/10.1126/science.1243089 Ekman, P. (1992). Are there basic emotions? Giménez, J.I., Molina, J.A. and Ortega, R. (2012). Self-employed mothers and the work-family conflict. Applied Economics, 44, 2133-2148. Giménez-Nadal, J.I., Molina, J.A. and Velilla, J. (2020). Work time and well-being for workers at home: evidence from the American Time Use Survey. International Journal of Manpower, 41(2), 184-206. Golden, T. D., & Gajendran, R. S. (2019). Unpacking the Role of a Telecommuter’s Job in Their Performance: Examining Job Complexity, Problem Solving, Interdependence, and Social Support. Journal of Business and Psychology, 34(1), 55–69. https://doi.org/10.1007/s10869-018-9530-4 Golden, T. D., Veiga, J. F., & Dino, R. N. (2008). The Impact of Professional Isolation on Teleworker Job Performance and Turnover Intentions: Does Time Spent Teleworking, Interacting Face-to-Face, or Having Access to Communication-Enhancing Technology Matter? Journal of Applied Psychology, 93(6), 1412–1421. https://doi.org/10.1037/a0012722 Hacker, J., vom Brocke, J., Handali, J., Otto, M., & Schneider, J. (2020). Virtually in this together–how web-conferencing systems enabled a new virtual togetherness during the COVID-19 crisis. European Journal of Information Systems, 29(5), 563–584. https://doi.org/10.1080/0960085X.2020.1814680 Hernandez-Suarez, A., Sanchez-Perez, G., Toscano-Medina, K., Martinez-Hernandez, V., Sanchez, V., & Perez-Meana, H. (2018). A Web Scraping Methodology for Bypassing Twitter API Restrictions. 1–7. http://arxiv.org/abs/1803.09875 Java, A., Song, X., Finin, T., & Tseng, B. (2007). Why We Twitter: Understanding Microblogging Usage and Communities. http://www.pownce.com Javadian, R. (2007). Social work responses to earthquake disasters: A social work intervention in Bam, Iran. International Social Work, 50(3), 334–346. Karl, K. A., Peluchette, J. v., & Aghakhani, N. (2022). Virtual Work Meetings During the COVID-19 Pandemic: The Good, Bad, and Ugly. Small Group Research, 53(3), 343–365. https://doi.org/10.1177/10464964211015286 Kumar, A., & Jaiswal, A. (2020). Systematic literature review of sentiment analysis on Twitter using soft computing techniques. Concurrency and Computation: Practice and Experience, 32(1), e5107. Lansley, G., & Longley, P. A. (2016). The geography of Twitter topics in London. Computers, Environment and Urban Systems, 58, 85–96. https://doi.org/10.1016/j.compenvurbsys.2016.04.002 Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M., Zettlemoyer, L., & Stoyanov, V. (2019). RoBERTa: A Robustly Optimized BERT Pretraining Approach. http://arxiv.org/abs/1907.11692 McKinney, W. (2012). Python for data analysis: Data wrangling with Pandas, NumPy, and IPython. “ O’Reilly Media, Inc.” Min, H., Peng, Y., Shoss, M., & Yang, B. (2021). Using machine learning to investigate the public’s emotional responses to work from home during the COVID-19 pandemic. Journal of Applied Psychology, 106(2), 214. Mohammad, S. M., & Turney, P. D. (2013). Crowdsourcing a word–emotion association lexicon. Computational Intelligence, 29(3), 436–465. Molina, J.A. (2021). The Work-Family Conflict: Evidence from the recent decade and lines of future research. Journal of Family and Economic Issues, 42, 4-10. Mouratidis, K., & Papagiannakis, A. (2021). COVID-19, internet, and mobility: The rise of telework, telehealth, e-learning, and e-shopping. Sustainable Cities and Society, 74. https://doi.org/10.1016/j.scs.2021.103182 Mouratidis, K., Peters, S., & van Wee, B. (2021). Transportation technologies, sharing economy, and teleactivities: Implications for built environment and travel. Transportation Research Part D: Transport and Environment, 92. https://doi.org/10.1016/j.trd.2021.102716 Olson, J. S., Covi, L., Rocco, E., Miller, W. J., & Allie, P. (1998). A Room of Your Own: What would it take to help remote groups work as well as collocated groups? CHI 98 Conference Summary on Human Factors in Computing Systems, 279–280. Osorio-Arjona, J., Horak, J., Svoboda, R., & García-Ruíz, Y. (2021). Social media semantic perceptions on Madrid Metro system: Using Twitter data to link complaints to space. Sustainable Cities and Society, 64. https://doi.org/10.1016/j.scs.2020.102530 Ozbilen, B., Wang, K., & Akar, G. (2021). Revisiting the impacts of virtual mobility on travel behavior: An exploration of daily travel time expenditures. Transportation Research Part A: Policy and Practice, 145, 49–62. https://doi.org/10.1016/j.tra.2021.01.002 Paul, M., & Dredze, M. (2011). You are what you tweet: Analyzing twitter for public health. Proceedings of the International AAAI Conference on Web and Social Media, 5(1), 265–272. Rehurek, R., & Sojka, P. (2011). Gensim–python framework for vector space modelling. NLP Centre, Faculty of Informatics, Masaryk University, Brno, Czech Republic, 3(2). Rinker, T. (2019). Lexicons for Text Analysis. Package ‘Lexicon.’ Saura, J. R., Ribeiro-Soriano, D., & Zegarra Saldaña, P. (2022). Exploring the challenges of remote work on Twitter users’ sentiments: From digital technology development to a post-pandemic era. Journal of Business Research, 142, 242–254. https://doi.org/10.1016/j.jbusres.2021.12.052 Schwartz, H., Eichstaedt, J., Kern, M., Dziurzynski, L., Lucas, R., Agrawal, M., Park, G., Lakshmikanth, S., Jha, S., & Seligman, M. (2013). Characterizing geographic variation in well-being using tweets. Proceedings of the International AAAI Conference on Web and Social Media, 7(1), 583–591. Stieglitz, S., Brachten, F., Ross, B., & Jung, A.-K. (2017). Do social bots dream of electric sheep? A categorisation of social media bot accounts. ArXiv Preprint ArXiv:1710.04044. Wrycza, S., & Maślankowski, J. (2020). Social Media Users’ Opinions on Remote Work during the COVID-19 Pandemic. Thematic and Sentiment Analysis. Information Systems Management, 37(4), 288–297. https://doi.org/10.1080/10580530.2020.1820631 Zhang, C., Yu, M. C., & Marin, S. (2021). Exploring public sentiment on enforced remote work during COVID-19. Journal of Applied Psychology, 106(6), 797–810. https://doi.org/10.1037/apl0000933 |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/117101 |