Gutierrez-Lythgoe, Antonio (2023): Movilidad urbana sostenible: Predicción de demanda con Inteligencia Artificial.
Preview |
PDF
MPRA_paper_117103.pdf Download (332kB) | Preview |
Abstract
The evolution of cities has led to changes in urban mobility patterns, including an increased number of trips, longer and more dispersed routes. Therefore, it is crucial to study urban mobility efficiently to promote sustainability and well-being. In this context, we reviewed the existing literature on the applications of artificial intelligence (AI) in urban mobility research, specifically focusing on Deep Learning techniques such as CNN and LSTM models. These AI tools are being used to address the challenges of urban mobility research and offer new possibilities for tackling the pressing issues faced by cities, such as sustainability in transportation. AI can contribute to improving sustainability by predicting real-time traffic, optimizing transportation efficiency, and informing public policies that promote sustainable modes of transportation. In this study, we propose a Random Forest model for predicting demand for sustainable urban mobility based on machine learning, achieving accurate and consistent predictions. Overall, the application of AI in urban mobility research presents a unique opportunity to advance towards more sustainable, livable cities and resilient societies.
Item Type: | MPRA Paper |
---|---|
Original Title: | Movilidad urbana sostenible: Predicción de demanda con Inteligencia Artificial |
English Title: | Sustainable Urban Mobility: Demand Prediction with Artificial Intelligence |
Language: | Spanish |
Keywords: | Artificial Intelligence, Urban mobility, Deep Learning, Machine Learning , sustainability |
Subjects: | C - Mathematical and Quantitative Methods > C4 - Econometric and Statistical Methods: Special Topics > C45 - Neural Networks and Related Topics C - Mathematical and Quantitative Methods > C5 - Econometric Modeling > C53 - Forecasting and Prediction Methods ; Simulation Methods Q - Agricultural and Natural Resource Economics ; Environmental and Ecological Economics > Q5 - Environmental Economics > Q56 - Environment and Development ; Environment and Trade ; Sustainability ; Environmental Accounts and Accounting ; Environmental Equity ; Population Growth R - Urban, Rural, Regional, Real Estate, and Transportation Economics > R4 - Transportation Economics > R41 - Transportation: Demand, Supply, and Congestion ; Travel Time ; Safety and Accidents ; Transportation Noise R - Urban, Rural, Regional, Real Estate, and Transportation Economics > R4 - Transportation Economics > R42 - Government and Private Investment Analysis ; Road Maintenance ; Transportation Planning |
Item ID: | 117103 |
Depositing User: | Antonio Gutiérrez |
Date Deposited: | 19 Apr 2023 07:20 |
Last Modified: | 19 Apr 2023 07:20 |
References: | Acemoglu, D., & Restrepo, P. (2020). The wrong kind of AI? Artificial intelligence and the future of labour demand. Cambridge Journal of Regions, Economy and Society, 13(1), 25–35. https://doi.org/10.1093/cjres/rsz022 Aghion, P., Jones, B. F., & Jones, C. I. (2018). Artificial intelligence and economic growth. In The economics of artificial intelligence: An agenda (pp. 237–282). University of Chicago Press. Akhavian, R., & Behzadan, A. H. (2016). Smartphone-based construction workers’ activity recognition and classification. Automation in Construction, 71(Part 2), 198–209. https://doi.org/10.1016/j.autcon.2016.08.015 Alzubi, J., Nayyar, A., & Kumar, A. (2018). Machine Learning from Theory to Algorithms: An Overview. Journal of Physics: Conference Series, 1142(1). https://doi.org/10.1088/1742-6596/1142/1/012012 Angarita-Zapata, J. S., Masegosa, A. D., & Triguero, I. (2019). A Taxonomy of Traffic Forecasting Regression Problems from a Supervised Learning Perspective. IEEE Access, 7, 68185–68205. https://doi.org/10.1109/ACCESS.2019.2917228 Arias-Molinares, D., Julio, R., García-Palomares, J. C., & Gutiérrez, J. (2021). Exploring micromobility services: Characteristics of station-based bike-sharing users and their relationship with dockless services. Journal of Urban Mobility, 1(October 2020), 100010. https://doi.org/10.1016/j.urbmob.2021.100010 Ben-Akiva, M., & Atherton, T. J. (1977). Methodology for Short-Range Travel Demand Predictions: Analysis of Carpooling Incentives. Journal of Transport Economics and Policy, 11(3), 224–261. http://www.jstor.org/stable/20052477 Bogaerts, T., Masegosa, A. D., Angarita-Zapata, J. S., Onieva, E., & Hellinckx, P. (2020). A graph CNN-LSTM neural network for short and long-term traffic forecasting based on trajectory data. Transportation Research Part C: Emerging Technologies, 112, 62–77. https://doi.org/10.1016/j.trc.2020.01.010 Breiman, L. (2001). Random forests. Machine Learning, 45, 5–32. Byon, Y.-J., & Liang, S. (2014). Real-time transportation mode detection using smartphones and artificial neural networks: Performance comparisons between smartphones and conventional global positioning system sensors. Journal of Intelligent Transportation Systems, 18(3), 264–272. Cottrell, A., & Cockshott, W. P. (1993). Calculation, complexity and planning: the socialist calculation debate once again. Review of Political Economy, 5(1), 73–112. Domingos, P. (2012). A few useful things to know about machine learning. Communications of the ACM, 55(10), 78–87. Du, S., Li, T., Gong, X., & Horng, S.-J. (2018). A hybrid method for traffic flow forecasting using multimodal deep learning. ArXiv Preprint ArXiv:1803.02099. Duan, Y., Lv, Y., & Wang, F. Y. (2016). Travel time prediction with LSTM neural network. IEEE Conference on Intelligent Transportation Systems, Proceedings, ITSC, 1053–1058. https://doi.org/10.1109/ITSC.2016.7795686 Echeverría, L., Giménez-Nadal, J.I. and Molina, J.A. (2022a). Who uses green mobility? Exploring profiles in developed countries. Transportation Research Part A: Policy and Practice, 163, 247-265. https://doi.org/10.1016/j.tra.2022.07.008. Echeverría, L., Giménez-Nadal, J.I. and Molina, J.A. (2022b). Green mobility and well-being. Ecological Economics, 195, 107368. https://doi.org/10.1016/j.ecolecon.2022.107368. Echeverría, L., Giménez-Nadal, J.I. and Molina, J.A. (2023). Citizen security and urban commuting in Latin America. Urban Studies, forthcoming. https://doi.org/10.1177/00420980231158035. Ermagun, A., & Levinson, D. (2018). Spatiotemporal traffic forecasting: review and proposed directions. Transport Reviews, 38(6), 786–814. https://doi.org/10.1080/01441647.2018.1442887 Fanaee-T, H., & Gama, J. (2014). Event labeling combining ensemble detectors and background knowledge. Progress in Artificial Intelligence, 2(2–3), 113–127. https://doi.org/10.1007/s13748-013-0040-3 Gao, Q., Zhou, F., Zhang, K., Trajcevski, G., Luo, X., & Zhang, F. (2017). Identifying Human Mobility via Trajectory Embeddings. www.datatang.com/data/44139 García-Palomares, J. C., Gutiérrez, J., & Latorre, M. (2012). Optimizing the location of stations in bike-sharing programs: A GIS approach. Applied Geography, 35(1–2), 235–246. https://doi.org/10.1016/j.apgeog.2012.07.002 Giménez, J.I. and Molina, J.A. (2014). Commuting time and labour supply in the Netherlands: a time use study. Journal of Transport Economics and Policy, 48 (3), 409-426. Giménez, J.I. and Molina, J.A. (2016). Commuting time and household responsibilities: evidence using propensity score matching. Journal of Regional Science, 56, 332-359. https://doi.org/10.1111/jors.12243. Giménez-Nadal, J.I. and Molina, J.A. (2019a). Green commuting and gasoline taxes in the United States. Energy Policy, 132, 324-331. https://doi.org/10.1016/j.enpol.2019.05.048. Giménez-Nadal, J.I. and Molina, J.A. (2019b). Modeling commuting time in the US: Bootstrapping techniques to avoid overfitting. Papers in Regional Science, 98(4), 1667-1684. https://doi.org/10.1111/pirs.12424. Giménez-Nadal, J.I. and Molina, J.A. (2019c). Daily feelings of US workers and commuting time. Journal of Transport & Health, 12, 21-33. https://doi.org/10.1016/j.jth.2018.11.001. Giménez-Nadal, J.I., Molina, J.A. and Velilla, J. (2020). Commuting and self-employment in Western Europe. Journal of Transport Geography, 88. 102856. https://doi.org/10.1016/j.trangeo.2020.102856. Giménez-Nadal, J.I., Molina, J.A. and Velilla, J. (2021). Two-way commuting: Asymmetries from time use surveys. Journal of Transport Geography, 95, 103146. https://doi.org/10.1016/j.trangeo.2021.103146. Giménez-Nadal, J.I., Molina, J.A. and Velilla, J. (2022a). Increasing the use of public bicycles: efficiency and demand. Economic Analysis and Policy, 76, 745-754. https://doi.org/10.1016/j.eap.2022.09.015. Giménez-Nadal, J.I., Molina, J.A. and Velilla, J. (2022b). The daily mobility of older adults: Urban/rural differences in ten developed countries. The Annals of Regional Science, forthcoming. https://doi.org/10.1007/s00168-022-01192-0. Gimenez-Nadal, J. I., Molina, J. A., & Velilla, J. (2022). Commuting time and sickness absence of US workers. Empirica, 49(3), 691-719. Gonzalez, P. A., Weinstein, J. S., Barbeau, S. J., Labrador, M. A., Winters, P. L., Georggi, N. L., & Perez, R. (2010). Automating mode detection for travel behaviour analysis by using global positioning systems-enabled mobile phones and neural networks. IET Intelligent Transport Systems, 4(1), 37–49. https://doi.org/10.1049/iet-its.2009.0029 Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT press. Hayashi, C. (1998). What is data science? Fundamental concepts and a heuristic example. Data Science, Classification, and Related Methods: Proceedings of the Fifth Conference of the International Federation of Classification Societies (IFCS-96), Kobe, Japan, March 27–30, 1996, 40–51. Held, M., Küng, L., Çabukoglu, E., Pareschi, G., Georges, G., & Boulouchos, K. (2018). Future mobility demand estimation based on sociodemographic information: A data-driven approach using machine learning algorithms. 18th Swiss Transport Research Conference (STRC 2018). Hou, Y., & Edara, P. (2018). Network Scale Travel Time Prediction using Deep Learning. Transportation Research Record, 2672(45), 115–123. https://doi.org/10.1177/0361198118776139 Lambert, K. J., & Fegley, T. (2023). Economic Calculation in Light of Advances in Big Data and Artificial Intelligence. Journal of Economic Behavior and Organization, 206, 243–250. https://doi.org/10.1016/j.jebo.2022.12.009 Lecun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. In Nature (Vol. 521, Issue 7553, pp. 436–444). Nature Publishing Group. https://doi.org/10.1038/nature14539 Makridakis, S. (2017). The forthcoming Artificial Intelligence (AI) revolution: Its impact on society and firms. In Futures (Vol. 90, pp. 46–60). Elsevier Ltd. https://doi.org/10.1016/j.futures.2017.03.006 McCarthy, J., Minsky, M. L., Rochester, N., & Shannon, C. E. (2006). A proposal for the dartmouth summer research project on artificial intelligence, august 31, 1955. AI Magazine, 27(4), 12. Molina, J.A., Giménez-Nadal, J.I. and Velilla, J. (2020). Sustainable commuting: Results from a social approach and international evidence on carpooling. Sustainability, 12(22), 9587. https://doi.org/10.3390/su12229587. Newell, A., & Simon, H. (1956). The logic theory machine--A complex information processing system. IRE Transactions on Information Theory, 2(3), 61–79. Norvig, P. R. (2002). A modern approach. Prentice Hall Upper Saddle River, NJ, USA: Rani, M., Nayak, R., & Vyas, OP (2015). An Ontology-Based Adaptive Personalized e-Learning System, Assisted by Software Agents on Cloud Storage. Knowledge-Based Systems, 90, 33–48. Osorio-Arjona, J., & García-Palomares, J. C. (2017). Nuevas fuentes y retos para el estudio de la movilidad urbana. Cuadernos Geográficos, 56(3), 247–267. https://doi.org/10.30827/CUADGEO.V56I3.5352 Samuel, A. L. (1959). Some studies in machine learning using the game of checkers. IBM Journal of Research and Development, 3(3), 210–229. Shu, P., Sun, Y., Zhao, Y., & Xu, G. (2020). Spatial-temporal taxi demand prediction using LSTM-CNN. 2020 IEEE 16th International Conference on Automation Science and Engineering (CASE), 1226–1230. Talavera-Garcia, R., Romanillos, G., & Arias-Molinares, D. (2021). Examining spatio-temporal mobility patterns of bike-sharing systems: the case of BiciMAD (Madrid). Journal of Maps, 17(1), 7–13. https://doi.org/10.1080/17445647.2020.1866697 Turing, A. M. (2009). Computing machinery and intelligence. Springer. von Mises, L. (2000). The equations of mathematical economics and the problem of economic calculation in a socialist state. The Quarterly Journal of Austrian Economics, 3(1), 27–32. Wang, D., Yang, Y., & Ning, S. (2018). DeepSTCL: A Deep Spatio-temporal ConvLSTM for Travel Demand Prediction. 2018 International Joint Conference on Neural Networks (IJCNN), 1–8. https://doi.org/10.1109/IJCNN.2018.8489530 Xiao, G., Juan, Z., & Gao, J. (2015). Travel mode detection based on neural networks and particle swarm optimization. Information, 6(3), 522–535. Xiao, G., Juan, Z., & Zhang, C. (2015). Travel mode detection based on GPS track data and Bayesian networks. Computers, Environment and Urban Systems, 54, 14–22. https://doi.org/https://doi.org/10.1016/j.compenvurbsys.2015.05.005 Yang, F., Yao, Z., & Jin, P. J. (2015). GPS and acceleration data in multimode trip data recognition based on wavelet transform modulus maximum algorithm. Transportation Research Record, 2526(1), 90–98. Yao, H., Wu, F., Ke, J., Tang, X., Jia, Y., Lu, S., Gong, P., Ye, J., & Li, Z. (2018). Deep Multi-View Spatial-Temporal Network for Taxi Demand Prediction. http://arxiv.org/abs/1802.08714 Ye, J., Sun, L., Du, B., Fu, Y., Tong, X., & Xiong, H. (2019). Co-Prediction of Multiple Transportation Demands Based on Deep Spatio-Temporal Neural Network. Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 305–313. https://doi.org/10.1145/3292500.3330887 |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/117103 |