Murasawa, Yasutomo (2023): 大学中退の逐次意思決定モデルの構造推定.
Preview |
PDF
23d.pdf Download (1MB) | Preview |
Abstract
Using the four-year academic records of 301 male students who enrolled in a specific department at a certain university in April 2016, this paper estimates the structural parameters of a sequential decision model of college dropout and conducts a counterfactual analysis. A well-known method for structural estimation of a dynamic discrete choice model is the Conditional Choice Probability (CCP) method, which recovers the integrated value function from a nonparametric estimate of the reduced-form dropout probability function (CCP function) and constructs a correction term to be added to a binary logit model of staying/dropout to ensure consistent estimation of the structural parameters. The CCP method is especially easy to apply to optimal stopping models, given the value of stopping (expected lifetime earnings after dropout). If dropouts are rare, however, ML estimation of the binary logit model may fail due to complete separation. To avoid this problem, this paper considers a modification of the CCP method, which uses a nonparametric estimate of the log odds ratio of staying/dropout as the dependent variable to apply the least squares method. Monte Carlo experiments show that precise estimation of the structural parameters requires precise estimation of the reduced-form CCP function, which requires a large sample since some states may rarely occur in optimal stopping models. Indeed, precise estimation of the structural parameters was difficult with our data. Nevertheless, given the discount factor and the scale parameter, certain counterfactual behaviors are identifiable independently from the remaining structural parameters. As an example, this paper estimates the effect of four-year tuition subsidies on the dropout probability of the male students in our data. The results show that a tuition subsidy of 100,000 yen per semester reduces the four-year cumulative dropout probability by approximately 2.2%. However, the lower cumulative dropout probability is due to later dropout decisions, and does not necessarily imply a higher graduation probability.
Item Type: | MPRA Paper |
---|---|
Original Title: | 大学中退の逐次意思決定モデルの構造推定 |
English Title: | Structural estimation of a sequential decision model of college dropout |
Language: | Japanese |
Keywords: | Dynamic discrete choice model; Optimal stopping model; Short panel; Conditional Choice Probability (CCP) method; Counterfactual analysis; Treatment effect |
Subjects: | C - Mathematical and Quantitative Methods > C2 - Single Equation Models ; Single Variables > C25 - Discrete Regression and Qualitative Choice Models ; Discrete Regressors ; Proportions ; Probabilities C - Mathematical and Quantitative Methods > C4 - Econometric and Statistical Methods: Special Topics > C41 - Duration Analysis ; Optimal Timing Strategies I - Health, Education, and Welfare > I2 - Education and Research Institutions > I21 - Analysis of Education |
Item ID: | 118183 |
Depositing User: | Prof. Yasutomo Murasawa |
Date Deposited: | 05 Aug 2023 02:00 |
Last Modified: | 05 Aug 2023 02:00 |
References: | Abbring, J. H. and Daljord, Ø. (2020). Identifying the discount factor in dynamic discrete choice models, Quantitative Economics, 11, 471–501, doi:10.3982/qe1352. Altonji, J. G. (1993). The demand for and return to education when education outcomes are uncertain, Journal of Labor Economics, 11, 48–83, doi:10.1086/298317. 姉川恭子(2014). 大学の学習・生活環境と退学率の要因分析, 経済論究(149), 1–16, doi:10.15017/1498295. Arcidiacono, P. (2004). Ability sorting and the returns to college major, Journal of Econometrics, 121, 343–375, doi:10.1016/j.jeconom.2003.10.010. Arcidiacono, P. and Ellickson, P. B. (2011). Practical methods for estimation of dynamic discrete choice models, Annual Review of Economics, 3, 363–394, doi:10.1146/annurev-economics-111809-125038. Arcidiacono, P. and Miller, R. A. (2020). Identifying dynamic discrete choice models off short panels, Journal of Econometrics, 215, 473–485, doi:10.1016/j.jeconom.2018.12.025. Bajari, P., Chu, C. S., Nekipelov, D. and Park, M. (2016). Identification and semiparametric estimation of a finite horizon dynamic discrete choice model with a terminating action, Quantitative Marketing and Economics, 14, 271–323, doi:10.1007/s11129-016-9176-3. Ching, A. T., Imai, S., Ishihara, M. and Jain, N. (2012). A practitioner’s guide to Bayesian estimation of discrete choice dynamic programming models, Quantitative Marketing and Economics, 10, 151–196, doi:10.1007/s11129-012-9119-6. Daljord, Ø., Nekipelov, D. and Park, M. (2019). Comments on “identification and semiparametric estimation of a finite horizon dynamic discrete choice model with a terminating action”, Quantitative Marketing and Economics, 17, 439–449, doi:10.1007/s11129-019-09210-w. Davison, A. C. and Hinkley, D. V. (1997). Bootstrap Methods and Their Application, Cambridge University Press, Cambridge. Eisenhauer, P. (2018). The approximate solution of finite-horizon discrete-choice dynamic programming models, Journal of Applied Econometrics, 34, 149–154, doi:10.1002/jae.2648. Gabler, J. and Raabe, T. (2020). respy—a framework for the simulation and estimation of Eckstein–Keane–Wolpin models, https://github.com/OpenSourceEconomics/respy. 北條雅一(2018). 学歴収益率についての研究の現状と課題, 日本労働研究雑誌(694), 29–38, 5 月. Hotz, V. J. and Miller, R. A. (1993). Conditional choice probabilities and the estimation of dynamic models, Review of Economic Studies, 60, 497–529, doi:10.2307/2298122. 朴澤泰男(2016a). 全国高校生調査からみた大学中退タイミング, 『経済的理由による学生等の中途退学の状況に関する実態把握・分析等及び学生等に対する経済的支援の在り方に関する調査研究報告書』(小林雅之編), 第2章, 7–15, 東京大学大学総合教育研究センター, 東京. 朴澤泰男(2016b). 奨学金は大学中退を抑制するか—時系列データを用いた検討, 家計経済研究(110), 75–83. 入江智也, 丸岡里香(2017). 大学入学時におけるUPI のkey 項目への該当および居住形態が退学リスクに及ぼす影響—生存時間分析を用いた検討—, 学生相談研究, 38, 1–11. Jørgensen, T. H. and To, M. (2019). Robust estimation of finite horizon dynamic economic models, Computational Economics, 55, 499–509, doi:10.1007/s10614-019-09898-8. 鎌田浩史, 井上雄介(2016). 教育達成モデルに基づく退学行動の研究~ディシジョンツリー分析による検討~, 大学評価とIR(5), 23–27. Kasahara, H. and Shimotsu, K. (2008). Pseudo-likelihood estimation and bootstrap inference for structural discrete Markov decision models, Journal of Econometrics, 146, 92–106, doi:10.1016/j.jeconom.2008.07.004. Keane, M. P. and Wolpin, K. I. (1994). The solution and estimation of discrete choice dynamic programming models by simulation and interpolation: Monte Carlo evidence, Review of Economics and Statistics, 76, 648–672, doi:10.2307/2109768. Keane, M. P. and Wolpin, K. I. (1997). The career decisions of young men, Journal of Political Economy, 105, 473–522, doi:10.1086/262080. 近藤伸彦, 畠中利治(2016). 学士課程における大規模データに基づく学修状態のモデル化, 教育システム情報学会誌, 33, 94–103, doi:10.14926/jsise.33.94. Manski, C. F. (1989). Schooling as experimentation: a reappraisal of the postsecondary dropout phenomenon, Economics of Education Review, 8, 305–312, doi:10.1016/0272-7757(89)90016-2. Manski, C. F. and Wise, D. A. (1983). College Choice in America, Harvard University Press, Cambridge, MA, doi:10.4159/harvard.9780674422285. 丸山文裕(1984). 大学退学に対する大学環境要因の影響力の分析, 教育社会学研究, 39, 140–153. 村澤昌崇(2008). 大学中途退学の計量的分析–高等教育研究への計量分析の応用(その3):フリーソフトRを用いて–, 比治山高等教育研究(1), 153–165. Nicoletti, M. C. (2019). Revisiting the Tinto’s theoretical dropout model, Higher Education Studies, 9(3), 52–64, doi:10.5539/hes.v9n3p52. 大友愛子, 岩山豊, 毛利隆夫(2014). 学内データの活用~大学におけるIR(Institutional Research)への取組み~, Fujitsu, 65(3), 41–47. R Core Team (2023). R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, https://www.R-project.org/. 労働政策研究・研修機構(2022). 『ユースフル労働統計2022 ―労働統計加工指標集―』, 労働政策研究・研修機構, 東京. 清水一(2013). 大学の偏差値と退学率・就職率に関する予備的分析:社会科学系学部のケース, 大阪経大論集, 64(1), 57–70, doi:10.24644/keidaironshu.64.1_57. 下瀬川陽(2015). 大学・短大中退が正社員就業と獲得賃金に与える効果の検討, 社会学年報, 44, 71–81. 白鳥成彦, 大石哲也, 田尻慎太郎, 森雅生, 室田真男(2020). 中退確率の遷移を用いた中退学生の類型化, 日本教育工学会論文誌, 44, 11–22. Stange, K. M. (2012). An empirical investigation of the option value of college enrollment, American Economic Journal: Applied Economics, 4, 49–84, doi:10.1257/app.4.1.49. Stinebrickner, R. and Stinebrickner, T. (2014). Academic performance and college dropout: using longitudinal expectations data to estimate a learning model, Journal of Labor Economics, 32, 601–644, doi:10.1086/675308. 高野敦子(2020). エビデンスに基づく中途退学防止対策構築に向けての予備的分析—兵庫大学の中退率改善に向けて, 兵庫高等教育研究(4), 121–136. 竹橋洋毅, 藤田敦, 杉本雅彦, 藤本昌樹, 近藤俊明(2016). 退学者予測におけるGPA と欠席率の貢献度, 大学評価とIR(5), 28–35. 立石慎治, 小方直幸(2016). 大学生の退学と留年―その発生メカニズムと抑制可能性―, 高等教育研究, 19, 123–143. Tinto, V. (1975). Dropout from higher education: A theoretical synthesis of recent research, Review of Educational Research, 45, 89–125, doi:10.3102/00346543045001089. Tinto, V. (1993). Leaving College: Rethinking the Causes and Cures of Student Attrition, 2nd ed., University of Chicago Press, Chicago. 読売新聞教育ネットワーク事務局(2018). 『大学の実力2019』, 中央公論新社, 東京. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/118183 |
Available Versions of this Item
- 大学中退の逐次意思決定モデルの構造推定. (deposited 05 Aug 2023 02:00) [Currently Displayed]