Giuli, Francesco and Maugeri, Gabriele (2023): Economic Effects of Covid-19 and Non-Pharmaceutical Interventions: applying a SEIRD-Macro Model to Italy.
Preview |
PDF
Economic Effects of Covid 19 and Non Pharmaceutical Interventions. Applying a SEIRD-Macro Model to Italy. Giuli and Maugeri (2023).pdf Download (1MB) | Preview |
Abstract
We study the economic effects generated by the proliferation of the Covid-19 epidemic and the implementation of non-pharmaceutical interventions by developing a SEIRD-Macro model, where the outbreak and policy interventions shape the labour input dynamic. We microfound an Epidemic-Macro model grounded on the Neo-Classical tradition, useful for epidemic and economic analysis at business cycle frequency, which is able to reproduce the highly debated health-output trade-off. Assuming a positive approach, we show the potential of our model by matching the epidemic and macroeconomic empirical evidence of the Italian case.
Item Type: | MPRA Paper |
---|---|
Original Title: | Economic Effects of Covid-19 and Non-Pharmaceutical Interventions: applying a SEIRD-Macro Model to Italy |
Language: | English |
Keywords: | SIR-Macro models, Covid-19, Non-pharmaceutical interventions. |
Subjects: | E - Macroeconomics and Monetary Economics > E3 - Prices, Business Fluctuations, and Cycles > E32 - Business Fluctuations ; Cycles |
Item ID: | 118422 |
Depositing User: | Phd Francesco Giuli |
Date Deposited: | 31 Aug 2023 13:49 |
Last Modified: | 31 Aug 2023 13:49 |
References: | [1] Allen, L.J.S. (1994). Some Discrete-Time SI, SIR, and SIS Epidemic Models. Mathematical Biosciences, 124(1): 83-105. [2] Alvarez, F., Argente, D. and Lippi, F. (2021). A Simple Planning Problem for COVID-19 Lock-down, Testing, and Tracing. American Economic Review: Insights, 3 (3): 367-382. [3] Angeli, M., Neofotistos, G., Mattheakis M. and Kaxiras, E (2022). Modeling the effect of the vaccination campaign on the COVID-19 pandemic. Chaos Solitons Fractals, 154: 1-9. [4] Atkeson, A. (2020). What Will Be the Economic Impact of COVID-19 in the US? Rough Estimates of Disease Scenarios. Working Paper n. 26867, National Bureau of Economic Research. [5] Baldwin, R. and Weder di Mauro, B. (2020). Economics in the Time of COVID-19. VoxEU.org, CEPR Press: 1-28. [6] Caldwell, J.M., Le, X., McIntosh, L., Meehan, M.T., Ogunlade, S., Ragonnet, R., O’Neill, G.K., Trauer, J.M. and McBryde, E.S. (2021) Vaccines and variants: Modelling insights into emerging issues in COVID-19 epidemiology. Paediatric Respiratory Reviews, 39: 32-39. [7] Ciccarone, G., Giuli, F. and Marchetti, E. (2021). COVID-19 Epidemic and Generational Welfare. Working Paper n. 260, Dipartimento di Economia, Università degli studi di Roma Tre. [8] Eichenbaum, M.S., Rebelo, S. and Trabandt, M. (2021). The Macroeconomics of Epidemics. The Review of Financial Studies, 34 (11): 5149–5187. [9] Faria e Castro, M. (2021). Fiscal Policy During a Pandemic. Journal of Economic Dynamics and Control, 125: 1-31. [10] Ferguson, N.M., Laydon, D., Nedjati-Gilani, G., Imai, N., Ainslie, K., Baguelin, M., Bhatia, S., Boonyasiri, A., Cucunuba, Z., Cuomo- Dannenburg, G., Dighe, A., Dorigatti, I., Fu, H., Gaythorpe, K., Green, W., Hamlet, A., Hinsley, W., Okell, L.C., van Elsland, S., Thompson, H., Verity, R., Volz, E., Wang, H., Wang, Y., Walker, P.G.T., Walters, C., Winskill, P., Whittaker, C., Donnelly, C.A., Riley, S. and Ghani, A.C. (2020). Impact of non-pharmaceutical interventions (NPIs) to reduce COVID-19 mortality and healthcare demand. On behalf of the imperial college covid-19response team, Imperial College of London. [11] Fisman, D.N. (2007). Seasonality of Infectious Diseases. The Annual Review of Public Health, 28: 127-43. [12] Fornaro, L. and Wolf, M. (2020). Covid-19 Coronavirus and Macroeconomic Policy. Working Paper n. 1168, Barcelona Graduate School of Economics. [13] Gagnon, E., Johannsen, B. and López-Salido, D. (2020). Supply-side Effects of Pandemic Mortality: Insight from an Overlapping-Generations Model. The B.E. Journal of Macroeconomics, 22 (1): 1-21. [14] Galí, J., López-Salido, J.D. and Vallés, J. (2007). Understanding the Effects of Government Spending on Consumption. Journal of the European Economic Association, 5 (1): 227–270. [15] Gatto, M., Bertuzzo, E., Maria, L., Miccoli, S., Carraro, L., Casagrandi, R. and Rinaldo, A. (2020). Spread and dynamics of the COVID-19 epidemic in Italy: Effects of emergency containment measures. PNAS, 117 (19): 10487-10491. [16] Giordano, G., Blanchini, F., Bruno, R., Colaneri, P., Di Filippo, A., Di Matteo, A. and Colaneri, M. (2020). Modelling the COVID-19 epidemic and implementation of population-wide interventions in Italy. Nature Medicine, 26: 855-860. [17] Gonzalez-Eiras, M. and Niepelt, D. (2020). On the Optimal “Lockdown” during an Epidemic. Working Paper, n. 8240, CESifo. [18] Goenka, A. and Liu, L. (2012). Infectious diseases and endogenous fluctuations. Economic Theory, 50(1): 125–149. [19] Guan, W., Ni, Z., Hu, Y., Liang, W., Ou, C., He, J., Liu, L., Shan, H., Lei, C., Hui, D.S.C., Du, B., Li, L., Zeng, G., Yuen, K., Chen, R., Tang, C., Wang, T., Chen, P., Xiang, J., Li, S., Wang, J., Liang, Z., Peng, Y., Wei, L., Liu, Y., Hu, Y., Peng, P., Wang, J., Liu, J., Chen, Z., Li, G., Zheng, Z., Qiu, S., Luo, J., Ye, C., Zhu, S. and Zhong, N. (2020). Clinical characteristics of 2019 novel coronavirus infection in China. The New England Journal of Medicine, 382 (18): 1708-1720. [20] Guerrieri, V., Lorenzoni, G., Straub, L. and Werning, I. (2022). Macroeconomic Implications of COVID-19: Can Negative Supply Shocks Cause Demand Shortages?. American Economic Review, 112 (5): 1437-1474. [21] Hale, T., Angrist, N., Goldszmidt, R. et al. (2021). A global panel database of pandemic policies (Oxford COVID-19 Government Response Tracker). Nature Human Behaviour, 5 (4): 529–538. [22] Hansen, G.D. (1985). Indivisible Labor and the Business Cycle. Journal of Monetary Economics, 16 (3): 309-332. [23] Istituto Nazionale di Statistica. http://dati.istat.it/. [24] Kermack, W. O. and McKendrick A. G. (1927). A contribution to the mathematical theory of epidemics. Proceedings of the Royal Society of London, Series A, 115 (772): 700–721. [25] Loli Piccolomini, E. and Zama, F., (2020). Monitoring Italian COVID-19 spread by a forced SEIRD model. PLoS ONE, 15 (8): 1-17. [26] McKibbin, W. and Fernando, R. (2021). The Global Macroeconomic Impacts of COVID-19: Seven Scenarios. Asian Economic Papers, 20 (2): 1–30. [27] Morettini, M., Sbrollini, A., Marcantoni, I., Burattini, L. (2020). Covid-19 in italy: Dataset of the Italian Civil Protection Department. Data in Brief, 30: 1-7. [28] Noll, N.B., Aksamentov, I., Druelle, V., Badenhorst, A., Ronzani, B., Jefferies, G., Albert, J. and Neher, R.A. (2020). COVID-19 Scenarios: an interactive tool to explore the spread and associated morbidity and mortality of SARS-CoV-2. medRxiv. [29] Piguillem, F. and Shi, L. (2020). Optimal Covid-19 Quarantine and Testing Policies. Working Papers n. 2004, Einaudi Institute for Economics and Finance. [30] Remuzzi A. and Remuzzi G. (2020). COVID-19 and Italy: What Next?. The Lancet, Health Policy, 395 (10231): 1225-1228. [31] Romano, S., Fierro, A. and Liccardo, A. (2020). Beyond the peak: A deterministic compartment model for exploring the Covid-19 evolution in Italy. PLoS ONE, 15 (11): 1-23. [32] Sadeghi, M., Greene, J.M. and Sontag, E.D. (2021). Universal features of epidemic models under social distancing guidelines. Annual Reviews in Control, 51: 426-440. [33] Zhang, S., Bi, G., Yang, Y., Qi, J., Li, S., Mao, X., Peng, R. and Yang, P. (2021). An Extended COVID-19 Epidemiological Model with Vaccination and Multiple Interventions for Controlling COVID-19 Outbreaks in the UK. medRxiv. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/118422 |