Polbin, Andrey and Shumilov, Andrei (2023): Прогнозирование инфляции в России с помощью TVP-модели с байесовским сжатием параметров. Published in: Voprosy statistiki , Vol. 30, No. 4 (2023): pp. 22-32.
Preview |
PDF
MPRA_paper_118650.pdf Download (852kB) | Preview |
Abstract
Forecasting inflation is an important and challenging practical task. In particular, models with a large number of explanatory variables on relatively short samples can often overfit in-sample and, thus, forecast poorly. In this paper, we study the applicability of the model with Bayesian shrinkage of time-varying parameters based on hierarchical normal-gamma prior to forecasting inflation in Russia. Models of this type allow for possible nonlinearities in relationships between regressors and inflation and, at the same time, can deal with the problem of overfitting. Using monthly data for 2001-2022, we find that at short forecast horizons of 1-3 months Bayesian normal-gamma shrinkage TVP model with a large set of inflation predictors outperforms in forecasting accuracy, measured by mean absolute and squared errors, its linear counterpart, linear and Bayesian autoregression models without predictors, as well as naive models. At the horizon of six months, the autoregression model with Bayesian shrinkage exhibits the best forecast performance. As the forecast horizon rises (up to one year), statistical differences in the quality of forecasts of competing models of inflation in Russia decrease.
Item Type: | MPRA Paper |
---|---|
Original Title: | Прогнозирование инфляции в России с помощью TVP-модели с байесовским сжатием параметров |
English Title: | Forecasting inflation in Russia using a TVP model with Bayesian shrinkage |
Language: | Russian |
Keywords: | inflation; forecasting; time-varying parameter model; Bayesian shrinkage; normal-gamma prior |
Subjects: | C - Mathematical and Quantitative Methods > C5 - Econometric Modeling > C53 - Forecasting and Prediction Methods ; Simulation Methods E - Macroeconomics and Monetary Economics > E3 - Prices, Business Fluctuations, and Cycles > E37 - Forecasting and Simulation: Models and Applications |
Item ID: | 118650 |
Depositing User: | Andrei Shumilov |
Date Deposited: | 02 Oct 2023 17:33 |
Last Modified: | 02 Oct 2023 17:33 |
References: | Андреев А. Прогнозирование инфляции методом комбинирования прогнозов в Банке России // Банк России. Серия докладов об экономических исследованиях. 2016. № 14. Байбуза И. Прогнозирование инфляции с помощью методов машинного обучения // Деньги и кредит. 2018. Т. 77. № 4. С. 42-59. doi: https://doi.org/10.31477/rjmf.201804.42. Павлов Е. Прогнозирование инфляции в России с помощью нейронных сетей // Деньги и кредит. 2020. Т. 79. № 1. С. 57-73. doi: https://doi.org/10.31477/rjmf.202001.57. Стырин К. Прогнозирование инфляции в России методом динамического усреднения моделей // Деньги и кредит. 2019. Т. 78. № 1. С. 3-18. doi: https://doi.org/10.31477/rjmf.201901.03. Третьяков Д.В., Фокин Н.Д. Помогают ли высокочастотные данные в прогнозировании российской инфляции? // Вестник Санкт-Петербургского университета. Экономика. 2021. Т. 37. № 2. С. 318-343. doi: https://doi.org/10.21638/spbu05.2021.206. Belmonte M.A.G., Koop G., Korobilis D. Hierarchical Shrinkage in Time‐Varying Parameter Models // Journal of Forecasting. 2014. Vol. 33. No. 1. P. 80-94. doi: https://doi.org/10.1002/for.2276. Bitto A., Frühwirth-Schnatter S. Achieving Shrinkage in a Time-Varying Parameter Model Framework // Journal of Econometrics. 2019. Vol. 210. No. 1. P. 75-97. doi: https://doi.org/10.1016/j.jeconom.2018.11.006. Cadonna A., Frühwirth-Schnatter S., Knaus P. Triple the Gamma – A Unifying Shrinkage Prior for Variance and Variable Selection in Sparse State Space and TVP Models // Econometrics. 2020. Vol. 8. No. 2. doi: https://doi.org/10.3390/econometrics8020020. De Mol C., Giannone D., Reichlin L. Forecasting Using a Large Number of Predictors: Is Bayesian Shrinkage a Valid Alternative to Principal Components? // Journal of Econometrics. 2008. Vol. 146. No. 2. P. 318-328. doi: https://doi.org/10.1016/j.jeconom.2008.08.011. Faust J., Wright J.H. Forecasting Inflation // Handbook of Economic Forecasting. Elsevier, 2013. P. 2-56. doi: https://doi.org/10.1016/B978-0-444-53683-9.00001-3. Frühwirth-Schnatter S., Wagner H. Stochastic Model Specification Search for Gaussian and Partial Non-Gaussian State Space Models //Journal of Econometrics. 2010. Vol. 154. No. 1. P. 85-100. doi: https://doi.org/10.1016/j.jeconom.2009.07.003. Griffin J.E., Brown P.J. Inference with Normal-Gamma Prior Distributions in Regression Problems // Bayesian Analysis. 2010. Vol. 5. No. 1. P. 171-188. doi: https://doi.org/10.1214/10-BA507. Knaus P., Bitto-Nemling A., Cadonna A., Frühwirth-Schnatter S. Shrinkage in the Time-Varying Parameter Model Framework Using the R Package shrinkTVP // Journal of Statistical Software. 2021. Vol. 100. P. 1-32. doi: https://doi.org/10.18637/jss.v100.i13. Marcellino M., Stock J.H., Watson M.W. A Comparison of Direct and Iterated Multistep AR Methods for Forecasting Macroeconomic Time Series // Journal of Econometrics. 2006. Vol. 135. No. 1-2. P. 499-526. doi: https://doi.org/10.1016/j.jeconom.2005.07.020. Stock J.H., Watson M.W. Why Has U.S. Inflation Become Harder to Forecast? // Journal of Money, Credit and Banking. 2007. Vol. 39. No. 1. P. 3-33. doi: https://doi.org/10.1111/j.1538-4616.2007.00014.x. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/118650 |