Balcombe, Kelvin and Fraser, Iain (2024): A Note on an Alternative Approach to Experimental Design of Lottery Prospects.
Preview |
PDF
MPRA_paper_119743.pdf Download (192kB) | Preview |
Abstract
e introduce an alternative approach to lottery prospects experimental design aimed at collecting experimental data for parametric estimation of the cumulative form of Prospect Theory (PT). Our approach incorporates two fundamental principles: ensuring that all tasks provide valuable information and avoiding redundancy among tasks. These principles mean that we avoid the construction of lottery prospects that duplicate information within the set of tasks generated. The methodological approach that we have designed ensures that each lottery pair is non-redundant in an informational sense. This means that the set of lottery tasks generated can help to improve the effectiveness of data collection when estimation of preference parameters is the main research objective. In this note, we describe our approach to experimental design in detail.
Item Type: | MPRA Paper |
---|---|
Original Title: | A Note on an Alternative Approach to Experimental Design of Lottery Prospects |
Language: | English |
Keywords: | Experimental Design; Lotteries; Risk and Uncertainty; Prospect Theory. |
Subjects: | C - Mathematical and Quantitative Methods > C5 - Econometric Modeling > C52 - Model Evaluation, Validation, and Selection C - Mathematical and Quantitative Methods > C9 - Design of Experiments > C90 - General D - Microeconomics > D8 - Information, Knowledge, and Uncertainty > D81 - Criteria for Decision-Making under Risk and Uncertainty |
Item ID: | 119743 |
Depositing User: | Prof Iain Fraser |
Date Deposited: | 17 Jan 2024 08:11 |
Last Modified: | 17 Jan 2024 08:11 |
References: | Amador-Hidalgo, L., Brañas-Garza, P., Espín Martín, A.M., García Muñoz, T.M. and Hernández, A. (2021). Cognitive abilities and risk-taking: Errors, not preferences. European Economic Review, 134 may, 103694. Andersson, O., Holm, H.J., Tyran, J.R. and Wengström, E. (2016). Risk aversion relates to cognitive ability: Preferences or noise?. Journal of the European Economic Association, 14(5): 1129-1154. Andersen, S., Cox, J.C., Harrison, G.W., Lau, M.I., Rutström, E.E. and Sadiraj, V. (2018). Asset integration and attitudes toward risk: Theory and evidence. Review of Economics and Statistics, 100(5): 816-830. Balcombe, K.G. and Fraser, I.M. (2015). Parametric preference functionals under risk in the gain domain: A Bayesian analysis. Journal of Risk and Uncertainty, 50: 161-187. Balcombe, K.G., Bardsley, N., Dadzie, S.and Fraser, I.M. (2019). Estimating parametric loss aversion with prospect theory: Recognising and dealing with size dependence. Journal of Economic Behavior and Organization, 162: 106-119. Bauer, M., Chytilova, J. and Morduch, J. (2012). Behavioral Foundations of Microcredit: Experimental and Survey Evidence from Rural India. American Economic Review, 102:1118--39. Bernheim, B.D. and Sprenger, C. (2020). On the Empirical Validity of Cumulative Prospect Theory: Experimental Evidence of Rank-Independent Probability Weighting. Econometrica, 88: 1363-1409. Bernheim, B.D., Royer, R. and Sprenger, C. (2022). Robustness of Rank Independence in Risky Choice. American Economic Review, 112: 415-420. Binswanger, H. (1980). Attitudes toward Risk: Experimental Measurement in Rural India. American Journal Agricultural Economics. 62 (3): 395--407. Booij, A. S., van Praag, M.S. and van de Kuilen, G. (2010). A Parametric Analysis of Prospect Theory's Functionals for the General Population. Theory and Decision, 68: 115-148. Bougherara, D., Gassmann, X., Piet, L. and Reynaud, A. (2017). Structural estimation of farmers' risk and ambiguity preferences: a field experiment. European Review of Agricultural Economics, 44(5): 782-808. Broomell, S. B. and Bhatia, S. (2014). Parameter recovery for decision modeling using choice data. Decision, 1(4): 252-274. Bruhin, A., Fehr-Duda, H. and Epper, T. (2010). Risk and Rationality: Uncovering Heterogeneity in Probability Distortion. Econometrica, 78: 1375-1412. Buschena, D.E and Zilberman, D. (1999). Testing the Effects of Similarity on Risky Choice: Implications for Violations of Expected Utility. Theory and Decision, 46: 251--276. Buschena, D.E.and Atwood, J.A. (2011). Evaluation of similarity models for expected utility violations. Journal of Econometrics, 162: 105--113. Cavagnaro, D.R., Gonzalez, R., Myung, J.I. and Pitt, M.A. (2013a). Optimal decision stimuli for risky choice experiments: An adaptive approach. Management Science, 59(2): 358-375. Cavagnaro, D.R., Pitt, M.A., Gonzalez, R. and Myung, J.I. (2013b). Discriminating among probability weighting functions using adaptive design optimization. Journal of Risk and Uncertainty, 47: 255-289 Charness, G., Gneezy, U. and Imas, A. (2013). Experiential methods: Eliciting risk preferences. Journal of Economic Behavior & Organization, 87: 43--51. Chowdhury, S., Sutter, M. and Zimmermann, K.F. (2022). Economic preferences across generations and family clusters: A large-scale experiment in a developing country. Journal of Political Economy, 130(9): 2361-2410. Crosetto, P. and Filippin, A. (2016). A theoretical and experimental appraisal of four risk elicitation methods. Experimental Economics, 19: 613--641. Drichoutis, A.C. and Lusk, J.L. (2016). What can multiple price lists really tell us about risk preferences? Journal of Risk and Uncertainty, 53:89--106. Eckel, C.C. and Grossman, P.J. (2002). Sex differences and statistical stereotyping in attitudes toward financial risk. Evolution and Human Behavior, 23(4): 281-295. Eckel, C.C. and Grossman, P.J. (2008). Men, women and risk aversion: Experimental evidence. Handbook of experimental economics results, 1, pp.1061-1073. Falk, A., Becker, A., Dohmen, T., Enke, B., Huffman, D. and Sunde, U. (2018). Global evidence on economic preferences. The Quarterly Journal of Economics, 133(4): 1645-1692. Freeman, D.J. and Mayraz, G. (2019). Why choice lists increase risk taking. Experimental Economics, 22:131--154. Frydman, C. and Jin, L.J. (2022). Efficient coding and risky choice. The Quarterly Journal of Economics, 137(1): 161-213. Grether, D.M. and Plott, C.R. (1979). Economic Theory of Choice and the Preference Reversal Phenomenon. American Economic Review, 69(4): 623-638. Harrison, G.W. and Ng, J.M. (2016). Evaluating the expected welfare gain from insurance. Journal of Risk and Insurance, 83(1): 91-120. Harrison G.W. and J. Swarthout T (2016). Cumulative Prospect Theory in the Laboratory: A Reconsideration, Experimental Economics Center Working Paper Series 2016-04, Experimental Economics Center, Andrew Young School of Policy Studies, Georgia State University. Hey, J.D. (2001). Does Repetition Improve Consistency? Experimental Economics, 4: 5--54. Hey, J.D. and Orme, C. (1994). Investigating Generalisations of Expected Utility Theory Using Experimental Data. Econometrica, 62(6): 1291-1326. Holt, C. and Laury, S. (2002). Risk aversion and incentive effects. American Economic Review, 92(5): 1644--1655. Holzmeister, F. and Stefan, M. (2021). The risk elicitation puzzle revisited: Across-methods (in) consistency?. Experimental Economics, 24(2): 593-616. Johnston, R.J., Boyle, K.J., Adamowicz, W., Bennett, J., Brouwer, R., Cameron, T.A., Hanemann, W.M., Hanley, N., Ryan, M., Scarpa, R., Tourangeau, R. and Vossler, C.A. (2017). Contemporary Guidance for Stated Preference Studies. Journal of the Association of Environmental and Resource Economists, 4(2): 319-405. Kahneman, D. and Tversky, A. (1986). Rational choice and the framing of decisions. Journal of Business, 59(4): 251-278. Kpegli, Y.T., Corgnet, B. and Zylbersztejn, A. (2023). All at once! A comprehensive and tractable semi-parametric method to elicit prospect theory components. Journal of Mathematical Economics, 104, p.102790. l'Haridon, O. and Vieider, F.M. (2019). All over the map: A worldwide comparison of risk preferences. Quantitative Economics, 10(1): 185--215. Lichtenstein, S. and Slovic, P. (1971). Reversal of Preferences Between Bids and Choices in Gambling Decisions. Journal of Experimental Psychology, 89: 46-55. Liu, E.M. and Huang, J. (2013). Risk Preferences and Pesticide Use by Cotton Farmers in China. Journal of Development Economics, 103: 202-215. Loomes,G. and Pogrebna, G. (2017). Do Preference Reversals Disappear When We Allow for Probabilistic Choice? Management Science, 63(1):166-184. Loomes, G. and Sugden, R. (1998). Testing Different Stochastic Specifications of Risky Choice. Economica, 65: 581-598. Moffatt, P. G. (2007). Optimal Experimental Design in Models of Decision and Choice. Chapter 15: 357-375, In Boumans M. (ed.) Measurment in Economics: A Handbook, Academic Press: London. Moffatt, P.G. (2015). Experimetrics: Econometrics for Experimental Economics. Palgrave Macmillan, London. Müller, W.G. and Ponce de Leon, A.C.M. (1996). Optimal Design of an Experiment in Economics, The Economic Journal, 106 (434): 122--127. Murphy, R.O. and W. ten Brincke, R.H. (2018). Hierarchical Maximum Likelihood Parameter Estimation for Cumulative Prospect Theory: Improving the Reliability of Individual Risk Parameter Estimates. Management Science, 64(1): 308-326. Nilsson, H., Rieskamp, J. and Wagenmakers, E.J. (2011). Hierarchical Bayesian parameter estimation for cumulative prospect theory, Journal of Mathematical Psychology, 55(1): 84-93. Olschewski, S., Sirotkin, P. and Rieskamp, J. (2021). Empirical underidentification in estimating random utility models: The role of choice sets and standardizations. British Journal of Mathematical and Statistical Psychology, 75: 252-292. Pedroni, A., Frey, R., Bruhin, A., Dutilh, G., Hertwig, R. and Rieskamp, J. (2017). The risk elicitation puzzle. Nature Human Behaviour, 1(11): 803-809. Pfeiffer, J., Meißner, M., Brandstätter, E., Riedl, R., Decker, R. and Rothlauf, F. (2014). On the influence of context-based complexity on information search patterns: An individual perspective. Journal of Neuroscience, Psychology, and Economics, 7(2): 103--124. Regier, D.A., Watson, V., Burnett, H. and Ungar, W.J. (2014). Task Complexity and Response Certainty in Discrete Choice Experiments: An Application to Drug Treatments for Juvenile Idiopathic Arthritis. Journal of Behavioral and Experimental Economics, 50: 40-49. Rieskamp, J. (2008). The Probabilistic Nature of Preferential Choice. Journal of Experimental Psychology: Learning, Memory, and Cognition, 34(6): 1446--1465. Sloman, S.J., Cavagnaro, D. and Broomell, S.B. (2023). Knowing what to know: Implications of the choice of prior distribution on the behavior of adaptive design optimization. arXiv preprint arXiv:2303.12683. Stott, H.P. (2006). Cumulative prospect theory's functional menagerie. Journal of Risk and Uncertainty, 32: 101--130. Tanaka, T., Camerer, C.F. and Nguyen, Q. (2010). Risk And Time Preferences: Linking Experimental And Household Survey Data From Vietnam. American Economic Review, 100(1): 557-571. Tversky, A. and Kahneman, D. (1981). The framing of decisions and the psychology of choice. Science, 211: 453-58. Tversky, A. and Kahneman, D. (1992). Advances in prospect theory: Cumulative representation of uncertainty. Journal of Risk and Uncertainty, 5(4): 297--323. Wakker, P.P. (2010). Prospect Theory: For Risk and Ambiguity, Cambridge University Press. Ward, P.S., and Singh, V. (2015). Using Field Experiments to Elicit Risk and Ambiguity Preferences: Behavioural Factots and the Adoption of New Technologies in Rural India. Journal of Development Studies, 51(6): 707-724. Yang, J., Pitt, M.A., Ahn, W.Y. and Myung, J.I. (2021). ADOpy: a python package for adaptive design optimization. Behavior Research Methods, 53: 874-897. Zilker, V. and Pachur, T. (2021). Nonlinear probability weighting can reflect attentional biases in sequential sampling. Psychological Review, (Early View). |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/119743 |