Farinelli, Simone and Tibiletti, Luisa (2024): Construction of a quantum Yang-Mills theory over the Minkowski space.
Preview |
PDF
MPRA_paper_121435.pdf Download (912kB) | Preview |
Abstract
A quantization procedure for the Yang-Mills equations for the Minkowski space R 1,3 is carried out in such a way that fi eld maps satisfying Wightman axioms of Constructive Quantum Field Theory can be obtained. Moreover, by removing the infrared and ultraviolet cutoff s, the spectrum of the corresponding (non-local) QCD Hamilton operator is proven to be positive and bounded away from zero, except for the case of the vacuum state, which has vanishing energy level. The whole construction is invariant for all gauge transformations preserving the Coulomb gauge. As expected from QED, if the coupling constant converges to zero, then so does the mass gap. This is the case for the running coupling constant leading to asymptotic freedom.
Item Type: | MPRA Paper |
---|---|
Original Title: | Construction of a quantum Yang-Mills theory over the Minkowski space |
Language: | English |
Keywords: | Constructive Quantum Field Theory, Yang-Mills Theory, Mass Gap |
Subjects: | C - Mathematical and Quantitative Methods > C0 - General C - Mathematical and Quantitative Methods > C3 - Multiple or Simultaneous Equation Models ; Multiple Variables |
Item ID: | 121435 |
Depositing User: | Prof. Luisa Tibiletti |
Date Deposited: | 17 Jul 2024 07:04 |
Last Modified: | 17 Jul 2024 07:04 |
References: | [An07] J.-P. ANTOINE, Quantum Theory Beyond Hilbert Space , in Lecture Notes in Physics book series, Volume 504, 2007. [Ba84] T. BALABAN, Propagators and Renormalization Transformations for Lattice Gauge Theories I , Comm. Math. Phys., Vol. 95, (17-40), 1984. [Ba84Bis] T. BALABAN, Propagators and Renormalization Transformations for Lattice Gauge Theories II , Comm. Math. Phys., Vol. 96, (223-250), 1984. [Ba85] T. BALABAN, Averaging Operations for Lattice Gauge Theories , Comm. Math. Phys., Vol. 98, (17-51), 1985. [Ba85Bis] T. BALABAN, Spaces of Regular Gauge Field Configurations on a Lattice and Gauge Fixing Conditions , Comm. Math. Phys. Vol. 99, (75-102), 1985. [Ba85Tris] T. BALABAN, Propagators for Lattice Gauge Theories in a Background Field , Comm. Math. Phys., Vol 99, (389-434), 1985. [Ba85Quater] T. BALABAN, Ultraviolet Stability of Three-Dimensional Lattice Pure Gauge Field Theories , Comm. Math. Phys., Vol. 102, (255-275), 1985. [Ba87] T. BALABAN, Renormalization Group Approach to Lattice Gauge Field Theories I. Generation of Effective Actions in a Small Field Approximation and a Coupling Constant Renormalization in Four Dimensions , Comm. Math. Phys. Vol. 109, (249-301), 1987. [Ba88] T. BALABAN, Renormalization Group Approach to Lattice Gauge Field Theories II. Cluster Expansions , Comm. Math. Phys. Vol. 116, (1-22), 1988. [Ba88Bis] T. BALABAN, Convergent Renormalization Expansions for Lattice Gauge Theories , Comm. Math. Phys. Vol. 119, (243-285), 1988. [Ba89] T. BALABAN, Large Field Renormalization I. The Basic Step of the R Operation , Comm. Math. Phys. Vol. 122, (175-202), 1989. [Ba89Bis] T. BALABAN, Large Field Renormalization II. Localization, Exponentiation, and Bounds for the R Operation , Comm. Math. Phys. Vol. 122, (355-392), 1989. [Bau14] H. BAUM, Eichfeldtheorie: Eine Einführung in die Differentialgeometrie auf Faserbündeln, Springer 2014. [BEP78] C. M. BENDER, T. EGUCHI, and H. PAGELS, Gauge-Fixing Degeneracies and Confinement in Non-Abelian Gauge Theories , Vol. 17, No. 4, (1086-1096), 1978. [BeKo12] Yu. M. BEREZANSKY and Y.G. KONDRATIEV, Spectral Methods in Infi nite-Dimensional Analysis , Mathematical Physics and Applied Mathematics, Vol 12 Part 2, Springer, 2012. [BHL11] V. BETZ, F. HIROSHIMA and J. LÖRINCZI, Feynman-Kač-Type Theorems and Gibbs Measures on Path Space: With Applications to Rigorous Quantum Field Theory , De Gruyter Studies in Mathematics, 2011. [Bl05] D. BLEECKER, Gauge Theory and Variational Principles , Dover 2005. [Bo06] V. BOGACHEV, Measure Theory, Vol 1 and 2 , Springer, 2006. [BLOT89] N. N. BOGOLUBOV, A. A. LOGUNOV, A. I. OKSAK and I. TODOROV, General Principles of Quantum Field Theory, Mathematical Physics and Applied Mathematics, Kluwer, 1989. [Br03] P. BRACKEN, Hamiltonian Formulation of Yang-Mills Theory and Gauge Ambiguity in Quantization , Can. J. Phys., Vol. 81, (545-554), 2003. [CCFI11] O. CALIN, D.-C. CHANG, K. FURUTANI and C. IWASAKI, Heat Kernels for Elliptic and Sub-elliptic Operators: Methods and Techniques , Applied and Numerical Harmonic Analysis, Springer, 2011. [Ca97] P. CARTIER (with C. DEWITT-MORETTE, A. WURM and D. COLLINS), A Rigorous Mathematical Foundation of Functional Integration , Functional Integration: Basics and Applications, NATO ASI Series, Series B: Physics Vol. 361, (1-50), 1997. [CDM10] P. CARTIER, C. DEWITT-MORETTE, Functional Integration: Action and Symmetries, Cambridge Monographs on Mathematical Physics, 2010. Universidad Politécnica de Valencia, Volume 10, No. 2, (187-195), 2009. [CCHS22] A. CHANDRA, I. CHEVYREV, M. HAIRER and H. SHEN, Stochastic Quantisation of Yang-Mills-Higgs in 3D, arXiv:2201.03487, 2022. [ChHa99] L. CHEN and K. HALLER, Quark Confi nement and Color Transparency in a Gauge-Invariant Formulation of QCD, International Journal of Modern Physics A, Vol. 14, No. 17,(2745- 2767), 1999. [DP75] L. I. DAIKHIN and D. A. POPOV, Einstein Spaces, and Yang-Mills Fields , Dokl. Akad. Nauk SSSR , 225:4, (790-793), 1975. [DZ92] G. DA PRATO and G. ZABCZYK, Stochastic Equations in Infi nite Dimensions , Encyclopedia of Mathematics and its Applications 45, Cambridge, 1992. [DD10] E. DE FARIA and W. DE MELO, Mathematical Aspects of Quantum Field Theory , Cambridge Studies in Advanced Mathematics, 2010. [Di13] J. DIMOCK, The Renormalization Group According to Balaban I: Small Fields , Rev. Math. Phys. 25, (1–64), 2013. [Di13Bis] J. DIMOCK, The Renormalization Group According to Balaban II: Large Fields , J. Math. Phys. 54, (1–85), 2013. [Di14] J. DIMOCK, The Renormalization Group According to Balaban III: Convergence , Annales Henri Poincaré volume 15, (2133–2175), 2014. [Doo94] J. L. DOOB, Measure Theory , Graduate Texts in Mathematics, Volume 143, 1994. [Do04] M. R. DOUGLAS, Report on the Status of the Yang-Mills Millenium Prize Problem , Clay Mathematics Institute, 2004. [EM82] D. M. EARDLEY and V. MONCRIEF, The Global Existence of Yang-Mills-Higgs Fields in 4-dimensional Minkowski Space I. Local Existence and Smoothness Properties , Comm. Math. Phys., Vol. 83, No. 2, (171-191), 1982. [EM82Bis] D. M. EARDLEY and V. MONCRIEF, The Global Existence of Yang-Mills-Higgs Fields in 4-dimensional Minkowski Space II. Completion of Proof , Comm. Math. Phys., Vol. 83, No. 2, (193-212), 1982. [EoM02] Encyclopedia of Mathemathics, Yang-Mills Fields , Kluwer, 2002. [Fa05] L. D. FADDEEV, Mass in Quantum Yang-Mills Theory , Perspective in Analysis, Math. Phys. Studies, Vol. 27, Springer, 2005. [FP67] L. D. FADDEEV and V. N. POPOV, Feynman Diagrams for the Yang-Mills Field , Phys. Lett. B, Vol. 25, Issue 1, (29-30), 1967. [FO76] J. S. FELDMAN and K. OSTERWALDER, The Wightman Axioms and the Mass Gap forWeakly Coupled φ 43, Quantum Field Theories , Annals of Physics, 97(1), (80–135), 1976. [Fe67] X. FERNIQUE, Processus linéaires, processus généralisés , Annales de l’Institut Fourier, tome 17, no 1, (1-92), 1967. [FMRS87] J. S. FELDMAN, J. MAGNEN, V. RIVASSEAU and R. SÉNÉOR, Construction and Borel Summability of Infrared Φ 44 by a Phase Space Expansion Commun. Math. Phys. 109, (437-480), 1987. [GK85] K. GAWĘDZKI and A. KUPIAINEN, Massless Lattice ϕ 4 4 Theory: Rigorous Control of a Renormalizable Asymptotically Free Model , Commun. Math. Phys. 99, (197-252), 1985. [GV64] M. GEL’FAND and N. Y. VILENKIN, Generalized Functions, Volume 4 , Academic Press, 1964. [Gi95] P. B. GILKEY, Invariance Theory, the Heat Equation and the Atiyah-Singer Index Theorem, Second Edition, Studies in Advanced Mathematics, CRC Press, 1995. [GJ73] J. GLIMM and A. JAFFE, Positivity of the φ 43 Hamiltonian , Fortschritte der Physik (Progress of Physics), 21, (327–376), 1973. [GJ87] J. GLIMM and A. JAFFE, Quantum Physics: A Functional Integral Point of View , Second Edition, Springer, 1987. [Gr78] V. N. GRIBOV, Quantization of Non-Abelian Gauge Theories , Nucl. Phys. B, Vol. 139, Issues 1-2, (1-19), 1978. [Gro72] L. GROSS, Existence and Uniqueness of Physical Ground States , Journal Of Functional Analysis 10, (52-109), 1972. [GW73] D. J. GROSS and F. WILCZEK, Ultraviolet Behavior of Non-Abelian Gauge Theories , Physical Review Letters. 30 (26), (1343–1346), 1973. [GuHo19] M. GUBINELLI and M. HOFMANOVÁ, Global Solutions to Elliptic and Parabolic Φ 4 Models in Euclidean Space , Commun. Math. Phys. 368, (1201–1266), 2019. [Ha14] M. HAIRER, A Theory of Regularity Structures , Inventiones Mathematicae 198 (2), (269–504), 2014. [He97] T. HEINZL, Hamiltonian Approach to the Gribov Problem , Nucl. Phy. B, Proc. Suppl., Vol. 54 A, (194-197), 1997. [Ja82] A. JAFFE, Renormalization , Seminar on Diff erential Geometry, Princeton University Press, Annals of Mathematics Studies 102, (507-523), 1982. [JW04] A. JAFFE and E. WITTEN, Quantum Yang-Mills Theory , Official Yang-Mills and Mass Gap Problem Description, Clay Mathematics Institute, 2004. [Ku96] H.-H. KUO, White Noise Distribution Theory , Probability and Stochastics Series, CRC Press, 1996. [La04] J. LACHAPELLE, Path Integral Solution of Linear Second Order Partial Differential Equations I. The General Construction , Ann. Phys., Vol. 314, (362-395), 2004. [Ma01] R. DE LA MADRID, Quantum Mechanics in Rigged Hilbert Space Language , PhD thesis, Universidad de Valladolid, 2001. [Ma08] R. DE LA MADRID, The Role of the Rigged Hilbert Space in Quantum Mechanics , Eur. J. Phys., Vol. 26, No. 2, (287-312), 2005. [MS76] J. MAGNEN and R. SÉNÉOR, The Infi nite Volume Limit of the φ 43 Model , Ann. Inst. H.Poincaré, Sect. A (N.S.), 24(2), (95–159), 1976. [MRS93] J. MAGNEN, V. RIVASSEAU and R. SÉNÉOR, Construction of YM4 with an Infrared Cutoff, Comm. Math. Phys. Vol. 155, (325-383), 1993. [MY54] R. L. MILLS and C. N. YANG, Conservation of Isotopic Spin and Gauge Invariance , Phy. Rev. Vol. 96, (191-195), 1954. [OS73] K. OSTERWALDER and R. SCHRADER, Axioms for Euclidean Green’s Functions , Comm. Math. Phys., Vol. 31, (83-112), 1973. [OS73Bis] K. OSTERWALDER and R. SCHRADER, Euclidean fermi Fields and a Feynman-Kač Formula for Boson-Fermion Models , Helv. Phys. Acta Vol. 46, (277-302), 1973. [OS75] K. OSTERWALDER and R. SCHRADER, Axioms for Euclidean Green’s Functions II , Comm. Math. Phys., Vol. 42, (281-305), 1975. [Pe78] R. D. PECCEI, Resolution of Ambiguities of Non-Abelian Gauge Fied Theories in the Coulomb Gauge , Phys. Rev. D: Particle and Fields, Vol. 17, No. 4, (1097-1110), 1978. [Po73] H. D. POLITZER, Reliable Perturbative Results for Strong Interactions , Physical Review Letters 30 (26), (1346–1349), 1973. [RS75] M. REED and B. SIMON, Fourier Analysis, Self-Adjointness, Methods of Modern Mathematical Physics, Vol. 2, Academic Press, 1975. [RJ99] D. REVUZ and M. YOR, Continuous Martingales and Brownian Motion , Grundlehren der mathematischen Wissenschaften, Springer, 1999. [Ri85] R. D. RICHTMYER, Principles of Advanced Mathematical Physics , Springer Texts and Mono-graphs in Physics, Second Edition, 1985. [Riv91] V. RIVASSEAU, From Perturbative to Constructive Renormalization , Princeton, NJ, Princeton University Press, 1991. [Ro66] J. E. ROBERTS, Rigged Hilbert Spaces in Quantum Mechanics , Comm. Math. Phys., Vol. 3, No. 2, (98-119), 1966. [SaSc10] F. SANNINO and J. SCHECHTER, Nonperturbative Results for Yang-Mills Theories , Phys. Rev. D Vol. 82, No. 7, 096008, 2010. [Sch08] W. SCHLEIFENBAUM, Nonperturbative Aspects of Yang-Mills Theory , Dissertation zur Erlangung des Grades eines Doktors der Naturwissenschaften, Universität Tübingen, 2008. [Sc73] L. SCHWARTZ, Radon measures on arbitrary topological spaces and cylindrical measures , Tata Institute of Fundamental Research Studies in Mathematics, London, Oxford University Press, 1973. [ScSn94] G. SCHWARZ and J. ŚNIATYCKI, The Existence and Uniqueness of Solutions of Yang-Mills Equations with Bag Boundary Conditions , Comm. Math. Phys., Vol. 159, No. 3, (593-604), 1994. [ScSn95] G. SCHWARZ and J. ŚNIATYCKI, Yang-Mills and Dirac Fields in a Bag, Existence and Uniqueness Theorems , Comm. Math. Phys., Vol. 168, No. 2, (441-453), 1995. [ScTw98] C. SCHULTE and R. TWAROCK, The Rigged Hilbert Space Formulation of Quantum Mechanics and its Implications for Irreversibility , based on lectures by Arno Bohm, http://arxiv.org/abs/quant-ph/9505004 , 1998. [Se78] I. E. SEGAL, General Properties of the Yang-Mills Equations in Physical Space , Proc. Nat. Acad. Sci. USA, Vol. 75, No.10,pplied Physical and Mathematical Sciences, (4608-4639), 1978. [Se79] I. E. SEGAL, The Cauchy Problem for the Yang-Mills Equations , J. Funct. Anal, Vol. 33, (175-194), 1979. [SeSi76] E. SEILER and B. SIMON, Nelson’s Symmetry and All That in the Yukawa 2 and pφ 4 q3 Field Theories , Annals of Physics, 97(2), (470–518), 1976. [Sim05] B. SIMON, Functional Integration and Quantum Physics , AMS Chelsea Publishing, Second Edition, 2004. [Sim15] B. SIMON, The PpΦq2 Euclidean (Quantum) Field Theory , Princeton Series in Physics, Princeton Legacy Library, 2015. [Si78] I. M. SINGER, Some Remarks on the Gribov Ambiguity , Comm. Math. Phys. 60, (7-12), 1978. [Sp19] D. SPIEGEL, Spectral Theory in Rigged Hilbert Space, University of Colorado Boulder, 2019. [SW10] R. F. STREATER and A. S. WIGHTMAN, PCT, Spin and Statistics, and All That , Princeton Landmarks in Physics, 2010. [Ti08] R. TICCIATI, Quantum Field Theory for Mathematicians , Encyclopedia of Mathematics and its Applications, Series Number 72, Cambridge University Press, 2008. [Tr06] F. TRÈVES, Topological Vector Spaces, Distributions and Kernels , Mineola, NY, Dover Publications, 2006. [We05] S. WEINBERG, The Quantum Theory of Fields, Volume 2: Modern Applications , Cambridge University Press, 2005. [Wig56] A. S. WIGHTMAN, Quantum Field Theory in terms of its Vacuum Expectation Values , Phy. Rev. 101, (860-866), 1956. [Ze09] E. ZEIDLER, Quantum Field Theory I: Basics in Mathematics and Physics: A Bridge between Mathematicians and Physicists, corrected 2nd printing, Springer 2009. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/121435 |