Zamoshnikova, Valeriya and Kashkin, Vasily (2023): Психометрические характеристики китайского клиента: тестирование программы Symanto. Published in: Digital economy , Vol. 4, No. 25 (2023): pp. 76-96.
Preview |
PDF
MPRA_paper_122138.pdf Download (3MB) | Preview |
Abstract
The article presents the results of testing the Symanto Insights Platform program with the psychometric analysis function which can be used to study the client audience. All the main stages of working with the program, the results obtained in the process of work, as well as their analysis and comparison with human content analysis are presented.
Item Type: | MPRA Paper |
---|---|
Original Title: | Психометрические характеристики китайского клиента: тестирование программы Symanto |
English Title: | Psychometric Characteristics of a Chinese Client: Testing the Symanto Program |
Language: | Russian |
Keywords: | Psychometric characteristics, audience research, marketing research, artificial intelligence |
Subjects: | C - Mathematical and Quantitative Methods > C8 - Data Collection and Data Estimation Methodology ; Computer Programs D - Microeconomics > D1 - Household Behavior and Family Economics > D12 - Consumer Economics: Empirical Analysis |
Item ID: | 122138 |
Depositing User: | Vasily Kashkin |
Date Deposited: | 07 Oct 2024 16:04 |
Last Modified: | 07 Oct 2024 16:04 |
References: | Amado, A., Cortez, P., Rita, P., & Moro, S. (2018). Research trends on Big Data in Marketing: A text mining and topic modeling based literature analysis. European Research on Management and Business Economics, 24(1), 1-7. Berger, J., Humphreys, A., Ludwig, S., Moe, W. W., Netzer, O., & Schweidel, D. A. (2020). Uniting the tribes: Using text for marketing insight. Journal of marketing, 84(1), 1-25. Boyd, R. L., Ashokkumar, A., Seraj, S., & Pennebaker, J. W. (2022). The development and psychometric properties of LIWC-22. Austin, TX: University of Texas at Austin, 10. Büschken, J., & Allenby, G. M. (2016). Sentence-based text analysis for customer reviews. Marketing Science, 35(6), 953-975. Calheiros, A. C., Moro, S., & Rita, P. (2017). Sentiment classification of consumer-generated online reviews using topic modeling. Journal of Hospitality Marketing & Management, 26(7), 675-693. Gan QiWei, G. Q., Ferns, B. H., Yu Yang, Y. Y., & Jin Lei, J. L. (2017). A text mining and multidimensional sentiment analysis of online restaurant reviews. Giorgi, S., Nguyen, K. L., Eichstaedt, J. C., Kern, M. L., Yaden, D. B., Kosinski, M., & Park, G. (2022). Regional personality assessment through social media language. Journal of personality, 90(3), 405-425. Müller, O., Junglas, I., Debortoli, S., & Vom Brocke, J. (2016). Using text analytics to derive customer service management benefits from unstructured data. MIS Quarterly Executive, 15(4). Ordenes, F. V., Theodoulidis, B., Burton, J., Gruber, T., & Zaki, M. (2014). Analyzing customer experience feedback using text mining: A linguistics-based approach. Journal of Service Research, 17(3), 278-295. Pennebaker, J. W., (2022). Computer-based language analysis as a paradigm shift. The Guilford Press (pp. 576–587). In M. Dehghani & R. L. Boyd (Eds.), Handbook of language analysis in psychology. Symanto Psychology AI [Computer software]. Retrieved from https://app.symanto.com/ 说说俄罗斯三维建模软件:KOMPAS-3D(КОМПАС-3D v20) [Computer software]. Retrieved from https://zhuanlan.zhihu.com/p/427981774 |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/122138 |