Suproń, Błażej (2024): Impact of the green transition on the production of cereals in the European Union. New insights based on the FGLS panel data model. Published in: Acta Scientiarum Polonorum. Oeconomia , Vol. 3, No. 23 (30 August 2024): pp. 55-72.
![]() |
PDF
MPRA_paper_122723.pdf Download (637kB) |
Abstract
Aim: The aim of this study is to econometrically assess the long-term impact of Green Deal-related regulatory areas on cereal crop production in European Union countries. Methods: The study is based on an analysis of panel data for 21 European Union countries for the period 1995–2021. The FGLS, PCSE and CCEMG models, which are robust to heteroskedasticity and cross-sectional dependence, were used to determine the impact of agricultural CO2 emissions, agricultural area, food production volumes and fertilizer consumption on cereal production. In addition, a robust test of the Westerlund ECM panel test model was applied to confirm cointegration. All models were bootstrapped to strengthen the results. Results: The results show that, in the long run, a 10% increase in CO2 emissions from agriculture leads to an average decrease in cereal production of 0.5%. A 1% increase in cultivated area leads to a 1.1% positive change in the value of cereal production, and a 1% increase in fertilizer use per hectare leads to a 0.38% increase in cereal production. The value of the food production index also shows a positive effect on cereal production. If the index increases by 1 p.p., cereal production increases by 1.13% in the long term. The study also found a positive relationship between an increase in the share of renewable energy and the volume of cereal production. If the share of renewable energy increases by 1%, the volume of cereal production in the EU countries increases by 0.11%. Conclusions: Overall, it can be concluded that the green transformation brings both negative and positive aspects of change to agriculture. The decrease in cultivated land and reduced use of artificial fertilizers may negatively impact farm productivity in crop production areas. On the other hand, the improvement of climatic conditions and the development of renewable energies could be beneficial for agriculture in the long term. The study is original in the sense that it fills an empirical and theoretical gap related to the verification of the impact of the Green Deal on the cereal production sector and thus on agriculture in the European Union.
Item Type: | MPRA Paper |
---|---|
Original Title: | Impact of the green transition on the production of cereals in the European Union. New insights based on the FGLS panel data model |
English Title: | Impact of the green transition on the production of cereals in the European Union. New insights based on the FGLS panel data model |
Language: | English |
Keywords: | Cereal production; Agriculture; FGLS; Green transformation; European Union |
Subjects: | C - Mathematical and Quantitative Methods > C2 - Single Equation Models ; Single Variables > C23 - Panel Data Models ; Spatio-temporal Models O - Economic Development, Innovation, Technological Change, and Growth > O1 - Economic Development > O13 - Agriculture ; Natural Resources ; Energy ; Environment ; Other Primary Products O - Economic Development, Innovation, Technological Change, and Growth > O4 - Economic Growth and Aggregate Productivity > O47 - Empirical Studies of Economic Growth ; Aggregate Productivity ; Cross-Country Output Convergence Q - Agricultural and Natural Resource Economics ; Environmental and Ecological Economics > Q1 - Agriculture > Q15 - Land Ownership and Tenure ; Land Reform ; Land Use ; Irrigation ; Agriculture and Environment Q - Agricultural and Natural Resource Economics ; Environmental and Ecological Economics > Q5 - Environmental Economics > Q54 - Climate ; Natural Disasters and Their Management ; Global Warming |
Item ID: | 122723 |
Depositing User: | Dr Błażej Suproń |
Date Deposited: | 27 Jun 2025 14:05 |
Last Modified: | 27 Jun 2025 14:05 |
References: | Abbasi, K. (2021). Green growth of cereal food production under the constraints of agricultural carbon emissions: A new insights from ARDL and VECM models. Sustainable Energy Technologies and Assessments, 47, 101452. https://doi.org/10.1016/j.seta.2021.101452 Abdullahi, N. M., Ibrahim, A., Ahmad, A., & Huo, X. (2023). Cereal production amidst fertilizer usage, cereal cropland area, and farm labor in Nigeria: A novel dynamic ARDL stimulations approach. Research Square. https://doi.org/10.21203/rs.3.rs-3666789/v1 Adamowicz, M. (2021). Zielona gospodarka, zielony wzrost i zazielenienie jako formy realizacji koncepcji zrównoważonego rozwoju. Wieś i Rolnictwo, 2(191), 13–33. https://doi.org/10.53098/wir022021/01 Adviento-Borbe, M. A. A. (2020). 3 - An agronomic overview of US cereal cropping systems. [In:] A. A. Perdon, S. L. Schonauer, & K. S. Poutanen (Eds.), Breakfast Cereals and How They Are Made (Third Edition), AACC International Press, 39–71. https://doi.org/10.1016/B978-0-12-812043-9.00003-5 Ahsan, F., Chandio, A. A., & Fang, W. (2020). Climate change impacts on cereal crops production in Pakistan: Evidence from cointegration analysis. International Journal of Climate Change Strategies and Management, 12(2), 257–269. https://doi.org/10.1108/IJCCSM-04-2019-0020 Bai, J., Choi, S. H., & Liao, Y. (2021). Feasible generalized least squares for panel data with cross-sectional and serial correlations. Empirical Economics, 60(1), 309–326. https://doi.org/10.1007/s00181-020-01977-2 Baig, I., Ahmed, F., Salam, Md. A., & Khan, S. (2020). An assessment of Climate change and Crop Productivity in India: A Multivariate Cointegration Framework. Test Engineering and Management, 83, 3438–3452. Baltagi, B. H., Feng, Q., & Kao, C. (2012). A Lagrange Multiplier test for cross-sectional dependence in a fixed effects panel data model. Journal of Econometrics, 170(1), 164–177. https://doi.org/10.1016/j.jeconom.2012.04.004 Beck, N., & Katz, J. N. (2011). Modeling Dynamics in Time-Series–Cross-Section Political Economy Data. Annual Review of Political Science, 14(1), 331–352. https://doi.org/10.1146/annurev-polisci-071510-103222 Beckman, J., Ivanic, M., Jelliffe, J. L., Baquedano, F. G., & Scott, S. G. (2020). Economic and Food Security Impacts of Agricultural Input Reduction Under the European Union Green Deal’s Farm to Fork and Biodiversity Strategies. https://doi.org/10.22004/ag.econ.307277 Ben Jebli, M., & Ben Youssef, S. (2017). The role of renewable energy and agriculture in reducing CO2 emissions: Evidence for North Africa countries. Ecological Indicators, 74, 295–301. https://doi.org/10.1016/j.ecolind.2016.11.032 Ben Mariem, S., Soba, D., Zhou, B., Loladze, I., Morales, F., & Aranjuelo, I. (2021). Climate Change, Crop Yields, and Grain Quality of C3 Cereals: A Meta-Analysis of [CO2], Temperature, and Drought Effects. Plants, 10(6), 1052. https://doi.org/10.3390/plants10061052 Blake, R. (2020). Will the European Green Deal Make Agriculture More Sustainable? Outlooks on Pest Management, 31(5), 198–200. https://doi.org/10.1564/v31_oct_01 Centi, G., Iaquaniello, G., & Perathoner, S. (2019). Chemical engineering role in the use of renewable energy and alternative carbon sources in chemical production. BMC Chemical Engineering, 1(1), 5. https://doi.org/10.1186/s42480-019-0006-8 Chandio, A. A., Jiang, Y., Fatima, T., Ahmad, F., Ahmad, M., & Li, J. (2022). Assessing the impacts of climate change on cereal production in Bangladesh: Evidence from ARDL modeling approach. International Journal of Climate Change Strategies and Management, 14(2), 125–147. https://doi.org/10.1108/IJCCSM-10-2020-0111 Chandio, A. A., Ozturk, I., Akram, W., Ahmad, F., & Mirani, A. A. (2020). Empirical analysis of climate change factors affecting cereal yield: Evidence from Turkey. Environmental Science and Pollution Research, 27(11), 11944–11957. https://doi.org/10.1007/s11356-020-07739-y Demirhan, H. (2020). Impact of increasing temperature anomalies and carbon dioxide emissions on wheat production. Science of The Total Environment, 741, 139616. https://doi.org/10.1016/j.scitotenv.2020.139616 Dogan, E., & Seker, F. (2016). Determinants of CO2 emissions in the European Union: The role of renewable and non-renewable energy. Renewable Energy, 94, 429–439. https://doi.org/10.1016/j.renene.2016.03.078 Dorgbetor, I. K., Ondrasek, G., Kutnjak, H., & Mikuš, O. (2022). What If the World Went Vegan? A Review of the Impact on Natural Resources, Climate Change, and Economies. Agriculture, 12(10), 10. https://doi.org/10.3390/agriculture12101518 Dumitrescu, E.-I., & Hurlin, C. (2012). Testing for Granger non-causality in heterogeneous panels. Economic Modelling, 29(4), 1450–1460. https://doi.org/10.1016/j.econmod.2012.02.014 Fayet, C. M. J., Reilly, K. H., Van Ham, C., & Verburg, P. H. (2022). The potential of European abandoned agricultural lands to contribute to the Green Deal objectives: Policy perspectives. Environmental Science & Policy, 133, 44–53. https://doi.org/10.1016/j.envsci.2022.03.007 Fomby, T. B., Johnson, S. R., & Hill, R. C. (1984). Feasible Generalized Least Squares Estimation. [In:] T. B. Fomby, S. R. Johnson, & R. C. Hill (Eds.), Advanced Econometric Methods, Springer, 147–169. https://doi.org/10.1007/978-1-4419-8746-4_8 Green, R., Cornelsen, L., Dangour, A. D., Turner, R., Shankar, B., Mazzocchi, M., & Smith, R. D. (2013). The effect of rising food prices on food consumption: Systematic review with meta-regression. BMJ, 346, f3703. https://doi.org/10.1136/bmj.f3703 Grochowska, R., & Staszczak, A. (2021). Możliwości implementacji założeń unijnej strategii „Od pola do stołu” w sektorze rolno-spożywczym (Possibilities of implementing the assumptions of the EU "Farm to Fork" strategy in the agri-food sector). Przemysł Spożywczy, 75(7). https://doi.org/10.15199/65.2021.7.1 Iji, P. A., & Barekatain, M. R. (2011). Implications for the Feed Industry. [In:] M. A. Dos Santos Bernardes (Ed.), Economic Effects of Biofuel Production. IntechOpen. https://doi.org/10.5772/16434 Im, K. S., Pesaran, M. H., & Shin, Y. (2003). Testing for unit roots in heterogeneous panels. Journal of Econometrics, 115(1), 53–74. https://doi.org/10.1016/S0304-4076(03)00092-7 Karaczun, Z., & Kozyra, J. (2020). Wpływ zmiany klimatu na bezpieczeństwo żywnościowe Polski (The impact of climate change on Poland's food security). Wydawnictwo SGGW, Warszawa. Kibria, Md. G., Aspy, N. N., Ullah, E., Dewan, Md. F., Hasan, Md. A., Hossain, Md. A., Haseeb, M., & Hossain, Md. E. (2023). Quantifying the effect of agricultural greenhouse gas emissions, food production index, and land use on cereal production in South Asia. Journal of Cleaner Production, 432, 139764. https://doi.org/10.1016/j.jclepro.2023.139764 Koondhar, M. A., Aziz, N., Tan, Z., Yang, S., Raza Abbasi, K., & Kong, R. (2021). Green growth of cereal food production under the constraints of agricultural carbon emissions: A new insights from ARDL and VECM models. Sustainable Energy Technologies and Assessments, 47, 101452. https://doi.org/10.1016/j.seta.2021.101452 Koondhar, M. A., Udemba, E. N., Cheng, Y., Khan, Z. A., Koondhar, M. A., Batool, M., & Kong, R. (2021). Asymmetric causality among carbon emission from agriculture, energy consumption, fertilizer, and cereal food production – A nonlinear analysis for Pakistan. Sustainable Energy Technologies and Assessments, 45, 101099. https://doi.org/10.1016/j.seta.2021.101099 Köprücü, Y., & Acaroğlu, H. (2023). How cereal yield is influenced by eco-environmental factors? ARDL and spectral causality analysis for Turkey. Cleaner Environmental Systems, 10, 100128. https://doi.org/10.1016/j.cesys.2023.100128 Kumar, P., Sahu, N. C., Kumar, S., & Ansari, M. A. (2021). Impact of climate change on cereal production: Evidence from lower-middle-income countries. Environmental Science and Pollution Research, 28(37), 51597–51611. https://doi.org/10.1007/s11356-021-14373-9 Laskowski, W., Górska-Warsewicz, H., Rejman, K., Czeczotko, M., & Zwolińska, J. (2019). How Important are Cereals and Cereal Products in the Average Polish Diet? Nutrients, 11(3), 3. https://doi.org/10.3390/nu11030679 Li, X., Xia, X., & Ren, J. (2022). Can the Participation in Quality Certification of Agricultural Products Drive the Green Production Transition? International Journal of Environmental Research and Public Health, 19, 17. https://doi.org/10.3390/ijerph191710910 Liu, X., Zhang, S., & Bae, J. (2017). The nexus of renewable energy-agriculture-environment in BRICS. Applied Energy, 204, 489–496. https://doi.org/10.1016/j.apenergy.2017.07.077 Macdiarmid, J. I. (2022). The food system and climate change: Are plant-based diets becoming unhealthy and less environmentally sustainable? Proceedings of the Nutrition Society, 81(2), 162–167. https://doi.org/10.1017/S0029665121003712 Malhi, G. S., Kaur, M., & Kaushik, P. (2021). Impact of Climate Change on Agriculture and Its Mitigation Strategies: A Review. Sustainability, 13, 3. https://doi.org/10.3390/su13031318 Monforti, F., Bódis, K., Scarlat, N., & Dallemand, J.-F. (2013). The possible contribution of agricultural crop residues to renewable energy targets in Europe: A spatially explicit study. Renewable and Sustainable Energy Reviews, 19, 666–677. https://doi.org/10.1016/j.rser.2012.11.060 Neupane, D., Adhikari, P., Bhattarai, D., Rana, B., Ahmed, Z., Sharma, U., & Adhikari, D. (2022). Does Climate Change Affect the Yield of the Top Three Cereals and Food Security in the World? Earth, 3, 1. https://doi.org/10.3390/earth3010004 Nico, G., & Christiaensen, L. (2023). Jobs, Food and Greening: Exploring Implications of the Green Transition for Jobs in the Agri-food System. World Bank. https://doi.org/10.1596/39819 Oishi, R. (2021). Economic Perspectives on Analysis of Ensuring Cereal Production and Consumption Security. [In:] Cereal Grains—Volume 2, IntechOpen. https://doi.org/10.5772/intechopen.96377 Parlinska, M., Jaskiewicz, J., & Rackiewicz, I. (2020). Wyzwania dla rolnictwa związane za strategią Europejski Zielony Ład w okresie pandemii (Challenges for agriculture related to the European Green Deal strategy during the pandemic). Zeszyty Naukowe Szkoły Głównej Gospodarstwa Wiejskiego w Warszawie. Problemy Rolnictwa Światowego, 20(2), 22–36. https://doi.org/10.22630/PRS.2020.20.2.10 Pesaran, M. H. (2006). Estimation and Inference in Large Heterogeneous Panels with a Multifactor Error Structure. Econometrica, 74(4), 967–1012. https://doi.org/10.1111/j.1468-0262.2006.00692.x Poczta, W., Gradziuk, P., Matyka, M., & Sadowski, A. (2023). Potential Changes in Land Use and Plant Production in Poland in the Context of Implementing the European Green Deal. Regional Barometer. Analyses & Prognoses, 19, 2. https://doi.org/10.56583/br.2303 Prandecki, K., Wrzaszcz, W., & Zieliński, M. (2021). Environmental and Climate Challenges to Agriculture in Poland in the Context of Objectives Adopted in the European Green Deal Strategy. Sustainability, 13, 18. https://doi.org/10.3390/su131810318 Rahman, M. H., Majumder, S. C., & Debbarman, S. (2020). Examine the Role of Agriculture to Mitigate the Co2 Emission in Bangladesh. Asian Journal of Agriculture and Rural Development, 10, 1. https://doi.org/10.18488/journal.1005/2020.10.1/1005.1.392.405 Röös, E., Mie, A., Wivstad, M., Salomon, E., Johansson, B., Gunnarsson, S., Wallenbeck, A., Hoffmann, R., Nilsson, U., Sundberg, C., & Watson, C. A. (2018). Risks and opportunities of increasing yields in organic farming. A review. Agronomy for Sustainable Development, 38(2), 14. https://doi.org/10.1007/s13593-018-0489-3 Rudnicki, R., Wiśniewski, Ł., & Biczkowski, M. (2021). A Spatial Typography of Environmentally Friendly Common Agricultural Policy Support Relevant to European Green Deal Objectives. Land, 10, 10. https://doi.org/10.3390/land10101092 Selwyn, B. (2022). A green new deal for agriculture: for, within, or against capitalism? Journal of Peasant Studies, 48(4), 778–806. https://doi.org/10.1080/03066150.2020.1854740 Simionescu, M., Bilan, Y., Gędek, S., & Streimikiene, D. (2019). The Effects of Greenhouse Gas Emissions on Cereal Production in the European Union. Sustainability, 11, 12. https://doi.org/10.3390/su11123433 Szajner, P., & Szczepaniak, I. (2023). Gospodarowanie energią w polskim przemyśle spożywczym (Energy management in the Polish food industry). Przemysł Spożywczy, 77(8). https://doi.org/10.15199/65.2023.8.1 Szubska-Włodarczyk, N. (2023). Organic Farming in the European Union in the Face of the Challenges of Sustainable Consumption. Zagadnienia Ekonomiki Rolnej, 376(3), 47–65. The European Green Deal (2019). European Commission. https://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1588580774040&uri=CELEX%3A52019DC0640 Wang, J., Vanga, S. K., Saxena, R., Orsat, V., & Raghavan, V. (2018). Effect of Climate Change on the Yield of Cereal Crops: A Review. Climate, 6(2), 2. https://doi.org/10.3390/cli6020041 Wang, X., & Liu, F. (2021). Effects of Elevated CO2 and Heat on Wheat Grain Quality. Plants, 10(5), 1027. https://doi.org/10.3390/plants10051027 Wesseler, J. (2022). The EU’s farm-to-fork strategy: An assessment from the perspective of agricultural economics. Applied Economic Perspectives and Policy, 44(4), 1826–1843. https://doi.org/10.1002/aepp.13239 Westerlund, J. (2007). Testing for Error Correction in Panel Data. Oxford Bulletin of Economics and Statistics, 69(6), 709–748. https://doi.org/10.1111/j.1468-0084.2007.00477.x White, H. (1980). A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity. Econometrica, 48(4), 817–838. https://doi.org/10.2307/1912934 Wood, D., & Lenné, J. M. (2018). A natural adaptive syndrome as a model for the origins of cereal agriculture. Proceedings of the Royal Society B: Biological Sciences, 285(1875), 20180277. https://doi.org/10.1098/rspb.2018.0277 Wooldridge, J. M. (2001). Applications of Generalized Method of Moments Estimation. Journal of Economic Perspectives, 15(4), 87–100. https://doi.org/10.1257/jep.15.4.87 Wooldridge, J. M. (2010). Econometric Analysis of Cross Section and Panel Data. The MIT Press. https://www.jstor.org/stable/j.ctt5hhcfr Wrzaszcz, W., & Prandecki, K. (2020). Agriculture and the European Green Deal. Zagadnienia Ekonomiki Rolnej, 365(Special Issue 4), 156–179. https://doi.org/10.30858/zer/131841 Xiang, X., & Solaymani, S. (2022). Change in cereal production caused by climate change in Malaysia. Ecological Informatics, 70, 101741. https://doi.org/10.1016/j.ecoinf.2022.101741 Yu, Q., Xiang, M., Wu, W., & Tang, H. (2019). Changes in global cropland area and cereal production: An inter-country comparison. Agriculture, Ecosystems & Environment, 269, 140–147. https://doi.org/10.1016/j.agee.2018.09.031 Zhang, X., & Long, H. (2013). MDG Hunger Target: Analysis of Cereal Production System and the Evaluation of Cereal Production Potential in Africa. Journal of Sustainable Development, 6(11), 82. https://doi.org/10.5539/jsd.v6n11p82 Zwane, T., Udimal, T. B., & Pakmoni, L. (2022). The Impact of Renewable Energy Consumption, Fertiliser Consumption and Agricultural Economic Growth on Agricultural Carbon Emissions: An Application of FMOLS and DOLS Approaches. Research Square. https://doi.org/10.21203/rs.3.rs-1841173/v1 |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/122723 |