Fu, Dongfeng and Pammolli, Fabio and Buldyrev, Sergey V. and Riccaboni, Massimo and Matia, Kaushik and Yamasaki, Kazuko and Stanley, H. Eugene (2005): The Growth of Business Firms: Theoretical Framework and Empirical Evidence. Published in: Proceedings of the National Academy of Sciences , Vol. 102, No. 52 (19 December 2005): pp. 18801-18806.
Preview |
PDF
MPRA_paper_15905.pdf Download (193kB) | Preview |
Abstract
We introduce a model of proportional growth to explain the distribution of business firm growth rates. The model predicts that it is exponential in the central part and depicts an asymptotic power-law behavior in the tails with an exponent ζ = 3. Because of data limitations, previous studies in this field have been focusing exclusively on the Laplace shape of the body of the distribution. In this article, we test the model at different levels of aggregation in the economy, from products to firms to countries, and we find that the model’s predictions agree with empirical growth distributions and size-variance relationships.
Item Type: | MPRA Paper |
---|---|
Original Title: | The Growth of Business Firms: Theoretical Framework and Empirical Evidence |
Language: | English |
Keywords: | proportional growth; preferential attachment; Laplace distribution |
Subjects: | D - Microeconomics > D2 - Production and Organizations > D21 - Firm Behavior: Theory L - Industrial Organization > L2 - Firm Objectives, Organization, and Behavior > L25 - Firm Performance: Size, Diversification, and Scope O - Economic Development, Innovation, Technological Change, and Growth > O4 - Economic Growth and Aggregate Productivity > O47 - Empirical Studies of Economic Growth ; Aggregate Productivity ; Cross-Country Output Convergence D - Microeconomics > D3 - Distribution > D39 - Other E - Macroeconomics and Monetary Economics > E0 - General > E01 - Measurement and Data on National Income and Product Accounts and Wealth ; Environmental Accounts L - Industrial Organization > L0 - General > L00 - General L - Industrial Organization > L6 - Industry Studies: Manufacturing > L60 - General L - Industrial Organization > L6 - Industry Studies: Manufacturing > L65 - Chemicals ; Rubber ; Drugs ; Biotechnology L - Industrial Organization > L1 - Market Structure, Firm Strategy, and Market Performance > L16 - Industrial Organization and Macroeconomics: Industrial Structure and Structural Change ; Industrial Price Indices E - Macroeconomics and Monetary Economics > E1 - General Aggregative Models > E17 - Forecasting and Simulation: Models and Applications |
Item ID: | 15905 |
Depositing User: | Laknori |
Date Deposited: | 26 Jun 2009 11:01 |
Last Modified: | 03 Oct 2019 17:42 |
References: | Gibrat R. (1930): “Une loi des reparationseconomiques: l’effet proportionnel”, Bulletin de Statistique Generale, France19, 469. Gibrat R. (1931): Les Inegalites Economiques, Librairie du Recueil Sirey, Paris. Kapteyn J. & Uven M. J. (1916): Skew Frequency Curves in Biology and Statistics, Hoitsema Brothers, Groningen. Zipf G. (1949): Human Behavior and the Principle of Least Effort, Addison-Wesley, Cambridge, MA. Gabaix X. (1999): “Zipf's Law For Cities: An Explanation”, Quarterly Journal of Economics 114, 739–767. Steindl J. (1965): Random Processes and the Growth of Firms: A study of the Pareto law, London, Griffin. Sutton J. (1997): “Gibrat's legacy”, Journal of Economic Literature 35, 40-59. Kalecki M. (1945): “On the Gibrat distribution”, Econometrica 13, 161-170. Simon H. A. (1955): “On a class of skew distributions functions”, Biometrika 42, 425-440. Simon H. A. & Bonini, C. P. (1958): “The size distribution of business firms”, American Economic Review 48, 607-617. Ijiri Y. & Simon H. A. (1975): “Some distributions associated with Bose-Einstein statistics” ,Proceedings of the National Academy of Sciences 72, 1654-1657. Ijiri Y. & Simon H. A., (1977): Skew distributions and the sizes of business firms, North-Holland Pub. Co., Amsterdam. Stanley M. H. R., Amaral L. A. N., Buldyrev S. V., Havlin S., Leschhorn H., Maass P., Salinger M. A. & Stanley H. E. (1996): “Scaling behaviour in the growth of companies”, Nature 379, 804-806. Lee Y., Amaral L. A. N., Canning D., Meyer M. & Stanley H. E. (1998): “Universal features in the growth dynamics of complex organizations”, Physical Review Letters 81, 3275-3278. Plerou V., Amaral L. A. N., Gopikrishnan P., Meyer M. & Stanley H. E. (1999): “Similarities between the growth dynamics of university research and of competitive economic activities”, Nature 400, 433-437. Bottazzi G., Dosi G., Lippi M., Pammolli F. & Riccaboni M. (2001): “Innovation and corporate growth in the evolution of the drug industry”, International Journal of Industrial Organization 19, 1161-1187. Matia K., Fu Dongfeng, Buldyrev S. V., Pammolli F., Riccaboni M., Stanley H.E. (2004): “Statistical properties of business firms structure and growth”, Europhysics letters 67, 498-503. Amaral L. A. N., Buldyrev S. V., Havlin S., Leschhorn H, Maass P., Salinger M. A., Stanley H. E. & Stanley M. H. R. (1997): “Scaling behavior in economics: I, empirical results for company growth”, Journal de Physique I France 7, 621–633. Buldyrev S. V., Amaral L. A. N., Havlin S., Leschhorn H, Maass P., Salinger M. A. , Stanley H. E. & Stanley M. H. R. (1997) “Scaling behavior in economics: II. Modeling of company growth”, Journal de Physique I France 7, 635-650. Sutton J. (2002): “The variance of firm growth rates: The ‘scaling’ puzzle”, Physica A 312, 577–590. De Fabritiis G., Pammolli F., Riccaboni M., (2003): “On size and growth of business firms”, Physica A 324, 38-44. Amaral L. A. N., Buldyrev S. V., Havlin S., Salinger M. A. & Stanley H. E. (1998): “Power Law Scaling for a System of Interacting Units with Complex Internal Structure”, Physical Review Letters 80, 1385-1388. Takayasu H. & Okuyama K. (1998): “Country dependence on company size distributions and a numerical model based on competition and cooperation”, Fractals 6, 67–79. Canning, D., Amaral, L. A. N., Lee, Y., Meyer, M. & Stanley, H. E. (1998): “Scaling the volatility of GDP growth rates”, Economics Letters 60, 335-341. Buldyrev S.V., Dokholyan N.V., Erramilli S., Hong M., Kim J.Y., Malescio G., Stanley H.E. (2003): “Hierarchy in social organization”, Physica A 330, 653–659 Kalecki, M. R. (1945): “On the Gibrat distribution” Econometrica 13, 161-170. Mansfield, D. E. (1962): “Entry, innovation, and the growth of firms”, American Economic Review 52, 1024-1051. Hall, B. H. (1987): “The relationship between firm size and firm growth in the US manufacturing sector”, The Journal of Industrial Economics 35, 583-606. Reed, W. J. (2001): “The Pareto, Zipf and other power laws”, Economics Letters 74, 15-19. Reed W. J., Hughes B. D. (2002): “From Gene Families and Genera to Incomes and Internet File Sizes: Why Power Laws are so Common in Nature”, Physical Review E 66, 067103. Kotz, S., Kozubowski, T. J. & Podgorski, K. (2001): The Laplace Distribution and Generalizations: A Revisit with Applications to Communications, Economics, Engineering, and Finance, Birkhauser, Boston. Johnson, N. L. & Kotz, S. (1977): Urn Models and Their Applications, Wiley, New York. Kotz, S., Mahmoud, H. & Robert, P. (2000): “On generalized Polya urn models”, Statistics and Probability Letters 49, 163-173. Reed, W. J. & Hughes, B. D. (2004): “A model explaining the size distribution of gene and protein families”, Mathematical biosciences 189, No. 1, 97-102. Stanley, H. E. (1971): Introduction to Phase Transitions and Critical Phenomena, Oxford University Press, Oxford. Cox, D. R. & Miller, H. D. (1968): The Theory of Stochastic Processes, Chapman and Hall, London. Hymer, S. & Pashigian, P. (1962): “Firm size and rate of growth”, Journal of Political Economy 70, 556-569. Matia, K., Amaral, L. A. N., Luwel, M., Moed, H. F. & Stanley, H. E. (2005): “Scaling phenomena in the growth dynamics of scientific output”, Journal of the American Society for Information Science and Technology 56, 893-902. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/15905 |