Ardia, David and Hoogerheide, Lennart F. (2010): Efficient Bayesian estimation and combination of GARCH-type models. Forthcoming in: Riskbook
Preview |
PDF
MPRA_paper_22919.pdf Download (270kB) | Preview |
Abstract
This chapter proposes an up-to-date review of estimation strategies available for the Bayesian inference of GARCH-type models. The emphasis is put on a novel efficient procedure named AdMitIS. The methodology automatically constructs a mixture of Student-t distributions as an approximation to the posterior density of the model parameters. This density is then used in importance sampling for model estimation, model selection and model combination. The procedure is fully automatic which avoids difficult and time consuming tuning of MCMC strategies. The AdMitIS methodology is illustrated with an empirical application to S&P index log-returns where non-nested GARCH-type models are estimated and combined to predict the distribution of next-day ahead log-returns.
Item Type: | MPRA Paper |
---|---|
Original Title: | Efficient Bayesian estimation and combination of GARCH-type models |
Language: | English |
Keywords: | GARCH; Bayesian inference; MCMC; marginal likelihood; Bayesian model averaging; adaptive mixture of Student-t distributions; importance sampling. |
Subjects: | C - Mathematical and Quantitative Methods > C5 - Econometric Modeling > C51 - Model Construction and Estimation C - Mathematical and Quantitative Methods > C2 - Single Equation Models ; Single Variables > C22 - Time-Series Models ; Dynamic Quantile Regressions ; Dynamic Treatment Effect Models ; Diffusion Processes C - Mathematical and Quantitative Methods > C1 - Econometric and Statistical Methods and Methodology: General > C15 - Statistical Simulation Methods: General C - Mathematical and Quantitative Methods > C1 - Econometric and Statistical Methods and Methodology: General > C11 - Bayesian Analysis: General |
Item ID: | 22919 |
Depositing User: | David Ardia |
Date Deposited: | 28 May 2010 06:18 |
Last Modified: | 27 Sep 2019 16:28 |
References: | Ardia D. (2008), Financial Risk Management with Bayesian Estimation of GARCH Models: Theory and Applications, volume 612 of Lecture Notes in Economics and Mathematical Systems. Springer-Verlag, Berlin, Germany. ISBN 978-3-540-78656-6. doi:10.1007/978-3-540-78657-3. URL http://www.springer.com/economics/econometrics/book/978-3-540-78656-6. Ardia, D. (2009), 'Bayesian Estimation of a Markov-Switching Threshold Asymmetric GARCH Model with Student-t Innovations', Econometrics Journal 12, 105-126. Ardia, D. (2008), Financial Risk Management with Bayesian Estimation of GARCH Models: Theory and Applications, Vol. 612, Springer-Verlag, Berlin, Germany. Ardia, D. & Hoogerheide, L. F. (2009), 'Bayesian Estimation of the GARCH(1,1) Model with Student-t Innovations in R.', MPRA working paper. Ardia, D.; Hoogerheide, L. F. & van Dijk, H. K. (2009), 'To Bridge, to Warp or to Wrap? A Comparative Study of Monte Carlo Methods forEfficient Evaluation of Marginal Likelihoods', Tinbergen Institute report 09-017/4. Ardia, D.; Hoogerheide, L. F. & Van Dijk, H. K. (2009), 'Adaptive Mixture of Student-t Distributions as a Flexible Candidate Distribution for Efficient Simulation: The R Package AdMit', Journal of Statistical Software 29(3), 1-32. Ardia, D.; Hoogerheide, L. F. & Van Dijk, H. K. (2009), 'AdMit: Adaptive Mixtures of Student-t Distributions', The R Journal 1(1), 25-30. Ardia, D.; Hoogerheide, L. F. & Van Dijk, H. K. (2008), '`AdMit': Adaptive Mixture of Student-t Distributions for Efficient Simulation in R'. Asai, M. (2006), 'Comparison of MCMC Methods for Estimating GARCH Models', Journal of the Japan Statistical Society 36(2), 199-212. Ausin, M. C. & Galeano, P. (2007), 'Bayesian Estimation of the Gaussian Mixture GARCH Model', Computational Statistics & Data Analysis 51(5), 2636-2652. Aussenegg, W. & Miazhynskaia, T. (2006), 'Uncertainty in Value at Risk Estimates under Parametric and Non-Parametric Modeling', Financial Markets & Portfolio Management 20(3), 243-264. Bauwens, L. & Lubrano, M. (2002), 'Bayesian Option Pricing Using Asymmetric GARCH Models', Journal of Empirical Finance 9(3), 321-342. Bauwens, L. & Lubrano, M. (1998), 'Bayesian Inference on GARCH Models Using the Gibbs Sampler', Econometrics Journal 1(1), C23-C46. Bauwens, L.; Lubrano, M. & Richard, J. (2000), Bayesian Inference in Dynamic Econometric Models, Oxford University Press, Oxford, UK. Bauwens, L.; Preminger, A. & Rombouts, J. V. K. (in press), 'Theory and Inference for a Markov Switching GARCH Model', Econometrics Journal , Technical report, CORE and Department of Economics, Universitàcatholique de Louvain, forthcoming in The Econometrics Journal. Bauwens, L. & Rombouts, J. V. K. (2007), 'Bayesian Inference for the Mixed Conditional Heteroskedasticity Model', Econometrics Journal 10(2), 408-425. Black, F. (1976), 'The Pricing of Commodity Contracts', Journal of Financial Economics 3(1-2), 167-179. Bollerslev, T.; Chou, R. Y. & Kroner, K. (1992), 'ARCH Modeling in Finance: A Review of the Theory and Empirical Evidence', Journal of Econometrics 52(1-2), 5-59. Bollerslev, T.; Engle, R. F. & Nelson, D. B. (1994), ARCH Models'Handbook of Econometrics', North Holland, , pp. 2959-3038. Chen, C. W. & Gerlach, R. (2008), 'Bayesian Inference and Model Comparison for Asymmetric Smooth Transition Heteroscedastic Models', Statistics & Computing 18(4), 391-408. Chen, C. W.; Gerlach, R. & So, M. K. P. (2008), Bayesian Model Selection for Heteroscedastic Models, in S. Chib; G. Koop; Bill Griffiths & Dek Terrell, ed.,'Bayesian Econometrics', Emerald Group Publishing Ltd, , pp. 567-594. Chen, C. W. S.; So, M. K. P. & Lin, E. M. H. (2009), 'Volatility Forecasting with Double Markov Switching GARCH Models', Journal of Forecasting 28(8), 681-697. Dueker, M. J. (1997), 'Markov Switching in GARCH Processes and Mean-Reverting Stock-Market Volatility', Journal of Business & Economic Statistics 15(1), 26-34. Engle, R. F. (2004), 'Risk and Volatility: Econometric Models and Financial Practice', The American Economic Review 94(3), 405-420. Engle, R. F. (1982), 'Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation', Econometrica 50(4), 987-1008. Frühwirth-Schnatter, S. (2006), Finite Mixture and Markov Switching Models, Springer-Verlag, New York/Berlin/Heidelberg. Gerlach, R. & Chen, C. W. S. (2006), 'Comparison of Nonnested Asymmetric Heteroscedastic Models', Computational Statistics & Data Analysis 51(15), 2164-2178. Geweke, J. F. (2007), 'Interpretation and Inference in Mixture Models: Simple MCMC Works', Computational Statistics & Data Analysis 51(4), 3529-3550. Geweke, J. F. (2004), 'Getting it Right: Joint Distribution Tests of Posterior Simulators', Journal of the American Statistical Association 99(467), 799-804. Geweke, J. F. (1989), 'Bayesian Inference in Econometric Models Using Monte Carlo Integration', Econometrica 57(6), 1317-1339. Geweke, J. F. (1989), 'Exact Predictive Densities in Linear Models with ARCH Disturbances', Journal of Econometrics 40(1), 63-86. Geweke, J. F. (1988), Exact Inference in Models with Autoregressive Conditional Heteroscedasticity, in Ernst R. Berndt; Halbert L. White & William A. Barnett, ed.,'Dynamic Econometric Modeling', Cambridge University Press, New York, USA, pp. 73-103. Glosten, L. R.; Jaganathan, R. & Runkle, D. E. (1993), 'On the Relation Between the Expected Value and the Volatility of the Nominal Excess Return on Stocks', Journal of Finance 48(5), 1779-1801. Hammersley, J. M. & Handscomb, D. C. (1965), Monte Carlo Methods, Chapman and Hall. Hastings, W. K. (1970), 'Monte Carlo Sampling Methods Using Markov Chains and their Applications', Biometrika 57(1), 97-109. Henneke, J. S.; Rachev, Svetlozar, T.; Fabozzi, F. J. & Nikolov, M. (2009), 'MCMC-based Estimation of Markov Switching ARMA-GARCH Models', Applied Economics iFirst, 1-13. Hoogerheide, L. F. (2006), 'Essays on Neural Network Sampling Methods and Instrumental Variables', PhD thesis, Tinbergen Institute, Erasmus University Rotterdam. Hoogerheide, L. F.; Kaashoek, J. F. & van Dijk, H. K. (2007), 'On the Shape of Posterior Densities and Credible Sets in Instrumental Variable Regression Models with Reduced Rank: An Application of Flexible Sampling Methods using Neural Networks', Journal of Econometrics 139(1), 154-180. Hoogerheide, L. F. & Van Dijk, H. K. (2008), 'Possibly Ill-Behaved Posteriors in Econometric Models: On the Connection between Model Structures, Non-ellipticalCredible Sets and Neural Network Simulation Techniques', Tinbergen Institute discussion paper 2008-036/4. Kass, R. E. & Raftery, A. E. (1995), 'Bayes Factors', Journal of the American Statistical Association 90(430), 773-795. Kaufmann, S. & Frühwirth-Schnatter, S. (2002), 'Bayesian Analysis of Switching ARCH Models', Journal of Time Series Analysis 23(4), 425-458. Kaufmann, S. & Scheicher, M. (2006), 'A Switching ARCH Model for the German DAX Index', Studies in Nonlinear Dynamics & Econometrics 10(4), 1-35. Klaassen, F. (2002), 'Improving GARCH Volatility Forecasts with Regime-Switching GARCH', Empirical Economics 27(2), 363-394. Kleibergen, F. & Van Dijk, H. K. (1993), 'Non-Stationarity in GARCH Models: A Bayesian Analysis', Journal of Applied Econometrics 8(S1), S41-S61. Kloek, T. & Van Dijk, H. K. (1978), 'Bayesian Estimates of Equation System Parameters: An Application of Integration by Monte Carlo', Econometrica 46(1), 1-19. Lamoureux, C. G. & Lastrapes, W. D. (1990), 'Persistence in Variance, Structural Change, and the GARCH Model', Journal of Business & Economic Statistics 8(2), 225-243. Lanne, M. & Luoto, J. (2008), 'Robustness of the Risk-Return Relationship in the U.S. Stock Market', Finance Research Letters 5(2), 118-127. Lee, S. & Hansen, B. E. (1994), 'Asymptotic Theory for the GARCH(1,1) Quasi-Maximum Likelihood Estimator', Econometric Theory 10(1), 29-52. Müller, P. & Pole, A. (1998), 'Monte Carlo Posterior Integration in GARCH Models', Sankhya: The Indian Journal of Statistics 60, 127-144. Marcucci, J. (2005), 'Forecasting Stock Market Volatility with Regime-Switching GARCH Models', Studies in Nonlinear Dynamics & Econometrics 9(4), 1-53. Meng, X. & Schilling, S. (2002), 'Warp Bridge Sampling', Journal of Computational & Graphical Statistics 11(3), 552-586. Meng, X. & Wong, W. H. (1996), 'Simulating Ratios of Normalizing Constants via a Simple Identity: A Theoretical Exploration', Statistica Sinica 6, 831-860. Metropolis, N.; Rosenbluth, A. W.; Rosenbluth, M. N.; Teller, A. H. & Teller, E. (1953), 'Equations of State Calculations by Fast Computing Machines', Journal of Chemical Physics 21(6), 1087-1092. Miazhynskaia, T. & Dorffner, G. (2006), 'A Comparison of Bayesian Model Selection Based on MCMC with Application to GARCH-type Models', Statistical Papers 47(4), 525-549. Miazhynskaia, T.; Frühwirth-Schnatter, S. & Dorffner, G. (2006), 'Bayesian Testing for Non-linearity in Volatility Modeling', Computational Statistics & Data Analysis 51(3), 2029-2042. Mistui, H. & Watanabe, T. (2003), 'Bayesian Analysis of GARCH Option Pricing Models', Journal of Statistical Society 33, 307-324. Nakatsuma, T. (2000), 'Bayesian Analysis of ARMA-GARCH Models: A Markov Chain Sampling Approach', Journal of Econometrics 95(1), 57-69. Nakatsuma, T. (1998), 'A Markov-Chain Sampling Algorithm for GARCH Models', Studies in Nonlinear Dynamics & Econometrics 3(2), 107-117. Nakatsuma, T. & Tsurumi, H. (1999), 'Bayesian Estimation of ARMA-GARCH Model of Weekly Foreign Exchange Rates', Asia-Pacific Financial Markets 6, 71-84. Nelson, D. B. (1991), 'Conditional Heteroskedasticity in Asset Returns: A New Approach', Econometrica 59(2), 347-370. R Development Core Team (2009), 'R: A Language and Environment for Statistical Computing', R Foundation for Statistical Computing. Rachev, S. T.; Hsu, J. S. J.; Bagasheva, Biliana, S. & Fabozzi, Frank, J. (2008), Bayesian Methods in Finance, John Whiley and Sons Ltd.. Ritter, C. & Tanner, M. A. (1992), 'Facilitating the Gibbs Sampler: the Gibbs Stopper and the Griddy-Gibbs Sampler', Journal of the American Statistical Association 87(419), 861-868. The MathWorks Inc. (2009), 'MATLAB'. Tsay, R. S. (2005), Analysis of Financial Time Series, John Wiley and Sons Ltd., Hoboken, New Jersey, USA. Van Dijk, H. K. & Kloek, T. (1980), 'Further Experience in Bayesian Analysis Using Monte Carlo Integration', Journal of Econometrics 14(3), 307-328. Vrontos, I. D.; Dellaportas, P. & Politis, D. N. (2000), 'Full Bayesian Inference for GARCH and EGARCH Models', Journal of Business & Economic Statistics 18(2), 187-198. Wago, H. (2004), 'Bayesian Estimation of Smooth Transition GARCH Model Using Gibbs Sampling', Mathematics & Computer in Simulation 64(1), 63-78. Zakoian, J. (1994), 'Threshold Heteroskedastic Models', Journal of Economic Dynamic & Control 18(5), 931-955. Zeevi, A. J. & Meir, R. (1997), 'Density Estimation Through Convex Combinations of Densities: Approximation and Estimation Bounds', Neural Networks 10(1), 99-109. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/22919 |
Available Versions of this Item
- Efficient Bayesian estimation and combination of GARCH-type models. (deposited 28 May 2010 06:18) [Currently Displayed]