Hoffmann, Marc and Munk, Axel and Schmidt-Hieber, Johannes (2010): Nonparametric estimation of the volatility under microstructure noise: wavelet adaptation.
Preview |
PDF
MPRA_paper_24562.pdf Download (424kB) | Preview |
Abstract
We study nonparametric estimation of the volatility function of a diffusion process from discrete data, when the data are blurred by additional noise. This noise can be white or correlated, and serves as a model for microstructure effects in financial modeling, when the data are given on an intra-day scale. By developing pre-averaging techniques combined with wavelet thresholding, we construct adaptive estimators that achieve a nearly optimal rate within a large scale of smoothness constraints of Besov type. Since the underlying signal (the volatility) is genuinely random, we propose a new criterion to assess the quality of estimation; we retrieve the usual minimax theory when this approach is restricted to deterministic volatility.
Item Type: | MPRA Paper |
---|---|
Original Title: | Nonparametric estimation of the volatility under microstructure noise: wavelet adaptation |
Language: | English |
Keywords: | Adaptive estimation; diffusion processes; high-frequency data; microstructure noise; minimax estimation; semimartingales; wavelets. |
Subjects: | C - Mathematical and Quantitative Methods > C1 - Econometric and Statistical Methods and Methodology: General > C14 - Semiparametric and Nonparametric Methods: General C - Mathematical and Quantitative Methods > C0 - General C - Mathematical and Quantitative Methods > C2 - Single Equation Models ; Single Variables > C22 - Time-Series Models ; Dynamic Quantile Regressions ; Dynamic Treatment Effect Models ; Diffusion Processes |
Item ID: | 24562 |
Depositing User: | Johannes Schmidt-Hieber |
Date Deposited: | 22 Aug 2010 00:25 |
Last Modified: | 29 Sep 2019 04:34 |
References: | F. Abramovich and B. W. Silverman. Wavelet decomposition ap- proaches to statistical inverse problems. Biometrika, 85:115–129, 1998. Y. Ait-Sahalia, P. A. Mykland, and L. Zhang. How often to sample a continuous-time process in the presence of market microstructure noise. The Review of Financial Studies, 18:351–416. Y. Ait-Sahalia, P. A. Mykland, and L. Zhang. Ultra high frequency volatility estimation with dependent microstructure noise. Journal of Econometrics. Forthcoming. T. G. Andersen, T. Bollerslev, F. X. Diebold, and P. Labys. The distribution of realized exchange rate volatility. Journal of the American Statistical Association, 96:42–55, 2001. F. M. Bandi and J. R. Russell. Separating microstructure noise from volatility. Journal of Financial Economics, 79:655–692, 2006. F. M. Bandi and J. R. Russell. Market microstructure noise, integrated variance estimators, and the accuracy of asymptotic approximations. Working paper, 2009. O. Barndorff-Nielsen, P. Hansen, A. Lunde, and N. Stephard. Designing realised kernels to measure the ex-post variation of equity prices in the presence of noise. Econometrica, 76(6):1481–1536, 2008. B. Bercu and A. Touati. Exponential inequalities for self-normalized martingales with application. Ann. Appl. Prob., 18(5):1848–1869, 2008. J.-P. Bouchaud and M. Potters. Theory of Financial Risks: From Statistical Physics to Risk Management. Cambridge University Press, 2000. T. Cai, A. Munk, and J. Schmidt-Hieber. Sharp minimax estimation of the variance of Brownian motion corrupted with Gaussian noise. Statist. Sinica, 20:1011–1024, 2010. Z. Ciesielski, G. Kerkyacharian, and B. Roynette. Quelques espaces fonctionnels associ a des processus gaussiens. Studia Mathematica, 110(3):171–204, 1994. A. Cohen. Numerical Analysis of Wavelet Methods. Elsevier, 2003. A. Cohen, I. Daubechies, and P. Vial. Wavelets on the interval and fast wavelet transforms. Appl. Comput. Harmon. Anal., 1:54–81, 1993. F. X. Diebold and G. H. Strasser. On the correlation structure of microstructure noise in theory and practice. Working Paper, 2008. D. Donoho and I. M. Johnstone. Ideal spatial adaptation via wavelet shrinkage. Biometrika, 81:425–455, 1994. D. Donoho, I. M. Johnstone, G. Kerkyacharian, and D. Picard. Wavelet shrinkage: Asymptopia? J. R. Statist. Soc. B, 57(2):301–369, 1995. R. F. Engle. The econometrics of ultra-high-frequency data. Econometrica, 68(1):1–22, 2000. J. Fan. A selective overview of nonparametric methods in financial econometrics. Statistical Science, 20:317–357, 2005. V. Genon-Catalot, C. Laredo, and D. Picard. Non-parametric estimation of the diffusion coefficient by wavelets methods. Scand J. Statist., 19:317–335, 1992. A. Gloter. Estimation du coefficient de diffusion de la volatilite d’une modele volatilite stochastique. C. R. Acad. Sci., Série I, 330:243--248, 2000. A. Gloter and M. Hoffmann. Estimation of the Hurst parameter from discrete noisy data. Ann. Statist., 35:1947–1974, 2007. A. Gloter and M. Hoffmann. Nonparametric reconstruction of a multifractal function from noisy data. Probab. Theory Relat. Fields, 146:155–187, 2010. A. Gloter and J. Jacod. Diffusions with measurement errors. I. Local asymptotic normality. ESAIM Probab. Stat., 5:225–242, 2001. A. Gloter and J. Jacod. Diffusions with measurement errors. II. Optimal estimators. ESAIM Probab. Stat., 5:243–260, 2001. P. Hall and C. C. Heyde. Martingale Limit Theory and Its Applications. Academic Press, New York, 1980. W. Härdle, D. Picard, A. Tsybakov, and G. Kerkyacharian. Wavelets, Approximation and Statistical Applications. Springer, Berlin, 1998. J. Hasbrouck. Assessing the quality of a security market: A new approach to transaction-cost measurement. The Review of Financial Studies, 6(1):191–212, 1993. M. Hoffmann. Minimax estimation of the diffusion coefficient through irregular sampling. Statistics and Probability Letters, 32(1):11–24, 1997. M. Hoffmann. Adaptive estimation in diffusion processes. Stochastic Process. Appl., 79:135–163, 1999. J. Jacod, Y. Li, P. A. Mykland, M. Podolskij, and M. Vetter. Microstructure noise in the continuous case: The pre-averaging approach. Stochastic Process. Appl., 119(7):2249–2276, 2009. I. Karatzas and S. E. Shreve. Brownian Motion and Stochastic Calculus. Springer, New York, 1998. G. Kerkyacharian and D. Picard. Thresholding algorithms, maxisets and well-concentrated bases. Test, 9:283–345, 2000. L. Le Cam and L. O. Yang. Asymptotics in Statistics: Some Basic Concepts. Springer, New York, 2000. A. Munk and J. Schmidt-Hieber. Nonparametric estimation of the volatility function in a high-frequency model corrupted by noise. arXiv:0908.3163, Math arXiv Preprint. A. Munk and J. Schmidt-Hieber. Lower bounds for volatility estimation in microstructure noise models. A Festschrift for Larry Brown, IMS Lecture Notes Series, 2010. To appear. M. Musiela and M. Rutkowski. Martingale Methods in Financial Modelling. Springer, New York, 2004. P. A. Mykland and L. Zhang. Discussion of paper A selective overview of nonparametric metods in financial econometrics by Jianqing Fan. Statistical Science, 20:347–350, 2005. M. Podolskij and M. Vetter. Estimation of volatility functionals in the simultaneous presence of microstructure noise and jumps. Bernoulli, 15:634–658, 2009. M. Reiß. Asymptotic equivalence and sufficiency for volatility estimation under microstructure noise. arxiv:1001.3006, Math arXiv Preprint. R. Roll. A simple model of the implicit bid-ask spread in an efficient market. Journal of Finance, 39:1127–1139, 1984. M. Rosenbaum. Estimation of the volatility persistence in a discretely observed diffusion model. Stochastic Process. Appl., 118(08):1434–1462, 2008. B.-D. Seo. Realized volatility and colored market microstructure noise. Manuscript, 2005. L. Zhang. Efficient estimation of stochastic volatility using noisy observations: A multi-scale approach. Bernoulli, 12:1019–1043, 2006. L. Zhang, P. Mykland, and Y. Ait-Sahalia. A tale of two time scales: Determining integrated volatility with noisy high-frequency data. J. Amer. Statist. Assoc., 472:1394–1411, 2005. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/24562 |