Boubacar Mainassara, Yacouba (2010): Selection of weak VARMA models by modified Akaike's information criteria.
Preview |
PDF
MPRA_paper_24981.pdf Download (276kB) | Preview |
Abstract
This article considers the problem of order selection of the vector autoregressive moving-average models and of the sub-class of the vector autoregressive models under the assumption that the errors are uncorrelated but not necessarily independent. We propose a modified version of the AIC (Akaike information criterion). This criterion requires the estimation of the matrice involved in the asymptotic variance of the quasi-maximum likelihood estimator of these models. Monte carlo experiments show that the proposed modified criterion estimates the model orders more accurately than the standard AIC and AICc (corrected AIC) in large samples and often in small samples.
Item Type: | MPRA Paper |
---|---|
Original Title: | Selection of weak VARMA models by modified Akaike's information criteria |
English Title: | Selection of weak VARMA models by modified Akaike's information criteria |
Language: | English |
Keywords: | AIC, discrepancy, identification, Kullback-Leibler information, model selection, QMLE, order selection, weak VARMA models. |
Subjects: | C - Mathematical and Quantitative Methods > C5 - Econometric Modeling > C52 - Model Evaluation, Validation, and Selection C - Mathematical and Quantitative Methods > C2 - Single Equation Models ; Single Variables > C22 - Time-Series Models ; Dynamic Quantile Regressions ; Dynamic Treatment Effect Models ; Diffusion Processes C - Mathematical and Quantitative Methods > C0 - General > C01 - Econometrics |
Item ID: | 24981 |
Depositing User: | Boubacar Mainassara Yacouba |
Date Deposited: | 22 Sep 2010 23:14 |
Last Modified: | 29 Sep 2019 00:26 |
References: | Akaïke, H. (1973) Information theory and an extension of the maximum likelihood principle. In {\em 2nd International Symposium on Information Theory,} Eds. B. N. Petrov and F. Csàki, pp. 267--281. Budapest: Akadémia Kiado. Anderson, T. W. (2003) {\em An Introduction to Multivariate Statistical Analysis 3nd Edn.} New Jersey, Wiley. Boubacar Mainassara, Y. (2009a) Multivariate portmanteau test for structural VARMA models with uncorrelated but non-independent error terms. \emph{Working Papers,} http://perso.univ-lille3.fr/$\sim$yboubacarmai/yac/VARMAPORTM.pdf Boubacar Mainassara, Y. (2009b) Estimating the asymptotic variance matrix of structural VARMA models with uncorrelated but non-independent error terms. \emph{Working Papers,} http://perso.univ-lille3.fr/$\sim$yboubacarmai/yac/VARMAEstCOV2.pdf Boubacar Mainassara, Y. and Francq, C. (2009) Estimating structural VARMA models with uncorrelated but non-independent error terms. \emph{Working Papers,} http://perso.univ-lille3.fr/$\sim$cfrancq/pub.html. Dufour, J-M., and Pelletier, D. (2005) Practical methods for modelling weak VARMA processes: identification, estimation and specification with a macroeconomic application. \emph{ Technical report, Département de sciences économiques and CIREQ, Université de Montréal, Montréal, Canada.} Findley, D.F. (1993) The overfitting principles supporting AIC, Statistical Research Division Report RR 93/04, Bureau of the Census. Francq, C. and Raïssi, H.] (2007) Multivariate Portmanteau Test for Autoregressive Models with Uncorrelated but Nonindependent Errors, {\em Journal of Time Series Analysis} 28, 454--470. Francq, C., Roy, R. and Zakoïan, J-M. (2005) Diagnostic checking in ARMA Models with Uncorrelated Errors, {\em Journal of the American Statistical Association} 100, 532--544. Francq, and Zakoïan, J-M. (1998) Estimating linear representations of nonlinear processes, {\em Journal of Statistical Planning and Inference} 68, 145--165. Francq, and Zakoïan, J-M. (2000) Covariance matrix estimation of mixing weak ARMA models, {\em Journal of Statistical Planning and Inference} 83, 369--394. Francq, and Zakoïan, J-M. (2005) Recent results for linear time series models with non independent innovations. In {\em Statistical Modeling and Analysis for Complex Data Problems,} Chap. 12 (eds P. {\sc Duchesne} and B. {\sc Rémillard}). New York: Springer Verlag, 241--265. Francq, and Zakoïan, J-M. (2007) HAC estimation and strong linearity testing in weak ARMA models, {\em Journal of Multivariate Analysis} 98, 114--144. Hannan, E. J. and Rissanen (1982) Recursive estimation of mixed of Autoregressive Moving Average order, {\em Biometrika} 69, 81--94. Hurvich, C. M. and Tsai, C-L. (1989) Regression and time series model selection in small samples. {\em Biometrika} 76, 297--307. Hurvich, C. M. and Tsai, C-L. (1993) A corrected Akaïke information criterion for vector autoregressive model selection. {\em Journal of Time Series Analysis} 14, 271--279. Lütkepohl, H. (1993) {\em Introduction to multiple time series analysis.} Springer Verlag, Berlin. Lütkepohl, H. (2005) {\em New introduction to multiple time series analysis.} Springer Verlag, Berlin. Magnus, J.R. and H. Neudecker (1988) {\em Matrix Differential Calculus with Application in Statistics and Econometrics.} New-York, Wiley. Muirhead, R.J. (1982) {\em Aspects of Multivariate Statistical Theory.} Wiley, New-York, Wiley. Reinsel, G. C. (1997) {\em Elements of multivariate time series Analysis.} Second edition. Springer Verlag, New York. Romano, J. L. and Thombs, L. A. (1996) Inference for autocorrelations under weak assumptions, {\em Journal of the American Statistical Association} 91, 590--600. Wei, W.H. (1994) {\em Time Series Analysis: Univariate and Multivariate Methods 2nd Edn.} New York, Addison-Wesley. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/24981 |