Guran, Liliana (2010): Teoreme de punct fix pentru operatori multivoci contractivi in spatii metrice generalizate.
Preview |
PDF
MPRA_paper_26204.pdf Download (256kB) | Preview |
Abstract
In this paper we give a xed point results for multivalued operators on generalized metric spaces endowed with a generalized w-distance. Then we study the data dependence for this new result.
Item Type: | MPRA Paper |
---|---|
Original Title: | Teoreme de punct fix pentru operatori multivoci contractivi in spatii metrice generalizate |
English Title: | Fixed point theorems for multivalued contractive operators on generalized metric spaces |
Language: | English |
Keywords: | multivalued weakly Picard operator, w-distance, fxed point, multivalued operator |
Subjects: | C - Mathematical and Quantitative Methods > C0 - General > C00 - General |
Item ID: | 26204 |
Depositing User: | Liliana Guran |
Date Deposited: | 01 Nov 2010 00:33 |
Last Modified: | 01 Oct 2019 07:00 |
References: | [1] A. Granas, J. Dugundji, Fixed Point Theory, Berlin, Springer-Verlag, 2003. [2] Y. Feng, S. Liu, Fixed point theorems for multivalued contractive mappings and multivalued Caristi type mappings, J. Math. Anal. Appl. 317(2006), 103-112. [3] L.Guran, Existence and data dependence for multivalued weakly contractive operators, Studia Univ. Babes-Bolyai, Mathematica, 54(2009), no. 3, 67-76. [4] O. Kada, T. Suzuki, W. Takahashi, Nonconvex minimization theorems and fixed point theorems in complete metric spaces, Math. Japonica 44(1996) 381-391. [5] A. Latif, A.W. Albar , Fixed point results for multivalued maps, Int. J. Contemp. Math. Sci. 2, 21-24(2007), 1129-1136. [6] A. Latif, A. A. N. Abdou Fixed Point Results for Generalized Contractive Multimaps in Metric Spaces, Fixed Point Theory and Applications Volume 2009 (2009), Article ID 432130, 16 pages doi:10.1155/2009/432130. [7] A. Latif, Saleh Abdullah Al-Mezel, Fixed Point Results Related to Reich's Problem, Fixed Point Theory and Applications, Vol.4(2009), Issue 2, 147-159. [8] T. Lazar, A. Petrusel, N. Shahzad, Fixed points for non-self operators and domanin invariance theorems, Nonlinear Analysis: Theory, Methods and Applications, 70(2009), 117-125. [9] S. Reich, Fixed points of contractive functions, Boll. Unione Mat. Ital.,5(1972), 26-42. [10] S. Reich, A. J. Zaslavski, Convergence of iterates of nonexpansive set-valued mappings, Set Valued Mappings with Applications in NonlinearAnalysis, 4(2002) of Mathematical Analysis and Applications, 411420, Taylor and Francis, London, UK. [11] S. Reich, A. J. Zaslavski, Generic existence of fxed points for set-valued mappings, Set-Valued Analysis, 10(2002), no. 4, 287296. [12] S. Reich, A. J. Zaslavski, Two results on xed points of set-valued nonexpansive mappings, Revue Roumaine de Mathmatiques Pures et Appliques, 51(2006), no. 1, 8994. [13] S. Reich, A. J. Zaslavski, Existence and Approximation of Fixed Points for Set-Valued Mappings, Fixed Point Theory and Applications, Volume 2010 (2010), Article ID 351531, 10 pages doi:10.1155/2010/351531. [14] I. A. Rus, Generalized Contractions and Applications, Presa Clujeana Universitaria, Cluj-Napoca, 2001. [15] T. Suzuki, W. Takahashi, Fixed points theorems and characterizations of metric completeness, Topological Methods in Nonlinear Analysis, Journal of Juliusz Schauder Center, 8(1996), 371-382. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/26204 |