Pivato, Marcus (2011): Additive representation of separable preferences over infinite products.
Preview |
PDF
MPRA_paper_28262.pdf Download (342kB) | Preview |
Abstract
Let X be a set of states, and let I be an infinite indexing set. Our first main result states that any separable, permutation-invariant preference order (>) on X^I admits an additive representation. That is: there exists a linearly ordered abelian group A and a `utility function' u:X-->A such that, for any x,y in X^I which differ in only finitely many coordinates, we have x>y if and only if the sum of [u(x_i)-u(y_i)] over all i in I is positive.
Our second result states: If (>) also satisfies a weak continuity condition, then, for any x,y in X^I, we have x>y if and only if the `hypersum' of [u(x_i)-u(y_i)] over all i in I is positive. The `hypersum' is an infinite summation operator defined using methods from nonstandard analysis. Like an integration operator or series summation operator, it allows us to define the sum of an infinite set of values. However, unlike these operations, the hypersum does not depend on some form of convergence (recall: A has no topology) ---it is always well-defined. Also, unlike an integral, the hypersum does not depend upon a sigma-algebra or measure on the indexing set I. The hypersum takes values in a linearly ordered abelian group A*, which is an ultrapower extension of A.
These results are applicable to infinite-horizon intertemporal choice, choice under uncertainty, and variable-population social choice.
Item Type: | MPRA Paper |
---|---|
Original Title: | Additive representation of separable preferences over infinite products |
Language: | English |
Keywords: | additive; separable; intertemporal choice; intergenerational choice; risk; uncertainty; variable-population social choice; generalized utilitarian; nonstandard analysis; hyperreal; linearly ordered abelian group; non-Archimedean utility; lexicographical utility |
Subjects: | D - Microeconomics > D8 - Information, Knowledge, and Uncertainty > D81 - Criteria for Decision-Making under Risk and Uncertainty D - Microeconomics > D9 - Intertemporal Choice > D90 - General D - Microeconomics > D6 - Welfare Economics > D61 - Allocative Efficiency ; Cost-Benefit Analysis |
Item ID: | 28262 |
Depositing User: | Marcus Pivato |
Date Deposited: | 20 Jan 2011 06:32 |
Last Modified: | 29 Sep 2019 16:23 |
References: | Anderson, R. M., 1991. Nonstandard analysis with applications to economics. In: Handbook of mathematical economics, Vol. IV. North-Holland, Amsterdam, pp. 2145-2208. Arrow, K. J., Sen, A. K., Suzumura, K. (Eds.), 2002. Handbook of Social Choice and Welfare. Vol. I. North-Holland, Amsterdam. Asheim, G. B., Tungodden, B., 2004. Resolving distributional conflicts between generations. Econom. Theory 24 (1), 221-230. Atsumi, H., 1965. Neoclassical growth and the efficient program of capital accumulation. Review of Economic Studies 32, 127-136. Banerjee, K., 2006. On the extension of the utilitarian and Suppes-Sen social welfare relations to infinite utility streams. Soc. Choice Welf. 27 (2), 327-339. Basu, K., Mitra, T., 2003. Aggregating infinite utility streams with intergenerational equity: the impossibility of being Paretian. Econometrica 71 (5), 1557-1563. Basu, K., Mitra, T., 2006. On the existence of paretian social welfare relations for infinite utility streams with extended anonymity. In: Roemer and Suzumura (2006). Basu, K., Mitra, T., 2007. Utilitarianism for infinite utility streams: a new welfare criterion and its axiomatic characterization. J. Econom. Theory 133 (1), 350-373. Blackorby, C., Bossert, W., Donaldson, D., February 1998. Uncertainty and critical-level population principles. Journal of Population Economics 11 (1), 1-20. Blackorby, C., Bossert, W., Donaldson, D., 2002. Utilitarianism and the theory of justice. In: Arrow et al. (2002), Vol. I, pp. 543-596. Blackorby, C., W., Bossert, Donaldson, D., 2005. Population Issues in Social Choice Theory, Welfare Economics, and Ethics. Cambridge UP, Cambridge. Blume, L., Brandenburger, A., Dekel, E., 1989. An overview of lexicographic choice under uncertainty. Ann. Oper. Res. 19 (1-4), 231-246, choice under uncertainty. Blume, L., Brandenburger, A., Dekel, E., 1991a. Lexicographic probabilities and choice under uncertainty. Econometrica 59 (1), 61-79. Blume, L., Brandenburger, A., Dekel, E., 1991b. Lexicographic probabilities and equilibrium refinements. Econometrica 59 (1), 81-98. Chipman, J. S., 1960. The foundations of utility. Econometrica 28, 193-224. Chipman, J. S., 1971. On the lexicographic representation of preference orderings. In: Preferences, utility and demand (a Minnesota Symposium). Harcourt Brace Jovanovich, New York, pp. 276-288. Debreu, G., 1960. Topological methods in cardinal utility theory. In: Mathematical methods in the social sciences 1959. Stanford Univ. Press, Stanford, Calif., pp. 16-26. Fishburn, P. C., 1974. Lexicographic orders, utilities and decision rules: a survey. Management Sci. 20, 1442-1471. Fishburn, P. C., 1982. The foundations of expected utility. Vol. 31 of Theory and Decision Library. D. Reidel Publishing Co., Dordrecht. Fishburn, P. C., LaValle, I. H., 1998. Subjective expected lexicographic utility: axioms and assessment. Ann. Oper. Res. 80, 183-206. Fleming, M., August 1952. A cardinal concept of welfare. Quarterly Journal of Economics 66 (3), 366-284. Fleurbaey, M., Michel, P., 2003. Intertemporal equity and the extension of the Ramsey criterion. J. Math. Econom. 39 (7), 777-802. Gorman, W., 1968. The structure of utility functions. Review of Economic Studies 35 (367-390). Gottinger, H.-W., 1982. Foundations of lexicographic utility. Math. Social Sci. 3 (4), 363-371. Gravett, K. A. H., 1956. Ordered abelian groups. Quart. J. Math. Oxford Ser. (2) 7, 57-63. Halpern, J. Y., 2009. A nonstandard characterization of sequential equilibrium, perfect equilibrium, and proper equilibrium. Internat. J. Game Theory 38 (1), 37-49. Halpern, J. Y., 2010. Lexicographic probability, conditional probability, and nonstandard probability. Games Econom. Behav. 68 (1), 155-179. Hammond, P., 1994. Elementary non-archimedean representations of probability for decision theory and games. In: Humphreys, P. (Ed.), Patrick Suppes: scientific philosoher. Vol. 1. Kluwer, Dordrecht, pp. 25-49. Harsanyi, J., 1955. Cardinal welfare, individualistic ethics and interpersonal comparisons of utility. Journal of Political Economy 63, 309-321. Hausner, M., 1954. Multidimensional utilities. In: Thrall, R., Coombs, C. (Eds.), Decision processes. John Wiley & Sons, New York, pp. 167-180. Hausner, M., Wendel, J. G., 1952. Ordered vector spaces. Proc. Amer. Math. Soc. 3, 977-982. Herden, G., Mehta, G. B., 2004. The Debreu gap lemma and some generalizations. J. Math. Econom. 40 (7), 747-769. Kirman, A. P., Sondermann, D., 1972. Arrow's theorem, many agents, and invisible dictators. J. Econom. Theory 5 (2), 267-277. Krantz, D. H., Luce, R. D., Suppes, P., Tversky, A., 1971. Foundations of measurement. Academic Press, New York, vol. 1: Additive and polynomial representations. Lauwers, L., 1998. Intertemporal objective functions: strong Pareto versus anonymity. Math. Social Sci. 35 (1), 37-55. Lauwers, L., 2010. Ordering infinite utility streams comes at the cost of a non-Ramsey set. J. Math. Econom. 46 (1), 32-37. Lauwers, L., Van Liedekerke, L., 1995. Ultraproducts and aggregation. J. Math. Econom. 24 (3), 217-237. Narens, L., 1974. Minimal conditions for additive conjoint measurement and qualitative probability. J. Mathematical Psychology 11, 404-430. Narens, L., 1985. Abstract measurement theory. MIT Press, Cambridge, MA. Parfit, D., 1984. Reasons and Persons. Clarendon Press, Oxford. Richter, M. K., 1971. Rational choice. In: Preferences, utility and demand (a Minnesota symposium). Harcourt Brace Jovanovich, New York, pp. 29-58. Roemer, J., Suzumura, K. (Eds.), 2006. Intergenerational equity and sustainability. Palgrave Macmillan, Oxford, UK. Ryberg, J., Tannsjo, T. (Eds.), 2004. The Repugnant Conclusion. Essays on Population Ethics. Kluwer AP, Dordrecht. Savage, L. J., 1954. The foundations of statistics. John Wiley & Sons Inc., New York. Skala, H. J., 1974. Nonstandard utilities and the foundation of game theory. Internat. J. Game Theory 3, 67-81. Skala, H. J., 1975. Non-Archimedean utility theory. Springer-Verlag, Berlin. von Weizsacker, C., 1965. Existence of optimal programs of accumulation for an infinite time horizon. Review of Economic Studies 32, 85-104. Wakker, P. P., 1989. Additive representations of preferences. Kluwer AP, Dordrecht. Wakker, P. P., Zank, H., 1999. State dependent expected utility for Savage's state space. Math. Oper. Res. 24 (1), 8-34. Zame, W. R., 2007. Can intergenerational equity be operationalized? Theoretical Economics 2, 187-202. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/28262 |