Wu, Haoyang (2011): A non-cooperative Pareto-efficient solution to a single-shot Prisoner's Dilemma.
Preview |
PDF
MPRA_paper_30070.pdf Download (476kB) | Preview |
Abstract
The Prisoner's Dilemma is a simple model that captures the essential contradiction between individual rationality and global rationality. Although the single-shot Prisoner's Dilemma is usually viewed simple, in this paper we will propose an algorithmic model and a non-binding scheme to help non-cooperative agents obtain Pareto-efficient payoffs self-enforcingly. The scheme stems from quantum game theory, but is applicable to the macro world immediately.
Item Type: | MPRA Paper |
---|---|
Original Title: | A non-cooperative Pareto-efficient solution to a single-shot Prisoner's Dilemma |
Language: | English |
Keywords: | Quantum game theory; Prisoner's Dilemma |
Subjects: | C - Mathematical and Quantitative Methods > C7 - Game Theory and Bargaining Theory > C72 - Noncooperative Games |
Item ID: | 30070 |
Depositing User: | Haoyang Wu |
Date Deposited: | 05 Apr 2011 17:47 |
Last Modified: | 27 Sep 2019 06:56 |
References: | 1. R. Axelrod, W.D. Hamilton, The evolution of cooperation, Science, 211 (1981) 1390-1396. 2. M.A. Nowak, R.M. May, Evolutionary games and spatial chaos, Nature, 359 (1992) 826-829. 3. F.C. Santos, J.M. Pacheco, Scale-free networks provide a unifying framework for the emergence of cooperation, Phys. Rev. Lett., 95 (2005) 098104. 4. M. Perc and A. Szolnoki, Social diversity and promotion of cooperation in the spatial prisoner's dilemma game, Phys. Rev. E, 77 (2008) 011904. 5. J. Eisert, M. Wilkens, M. Lewenstein, Quantum games and quantum strategies, Phys. Rev. Lett., 83 (1999) 3077-3080. 6. J. Du, H. Li, X. Xu, M. Shi, J. Wu, X. Zhou and R. Han, Experimental realization of quantum games on a quantum computer, Phys. Rev. Lett., 88 (2002) 137902. 7. A.P. Flitney and L.C.L. Hollenberg, Nash equilibria in quantum games with generalized two-parameter strategies, \emph{Phys. Lett. A} \textbf{363} (2007) 381-388. 8. H. Wu, Quantum mechanism helps agents combat ``bad'' social choice rules. \emph{International Journal of Quantum Information}, 2010 (accepted). \\ http://arxiv.org/abs/1002.4294 9. S. J. van Enk and R. Pike, Classical rules in quantum games, \emph{Phys. Rev. A} \textbf{66} (2002) 024306. 10. T.D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe and J.L. O'Brien, Quantum computers, Nature, 464 (2010) 45-53. 11. H. Wu, On amending the sufficient conditions for Nash implementation. \emph{Theoretical Computer Science}, 2011 (under review). \\ http://arxiv.org/abs/1004.5327 |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/30070 |
Available Versions of this Item
- A non-cooperative Pareto-efficient solution to a single-shot Prisoner's Dilemma. (deposited 05 Apr 2011 17:47) [Currently Displayed]