Bhowmik, Anuj and Cao, Jiling
(2011):
*Infinite dimensional mixed economies with asymmetric information.*

Preview |
PDF
MPRA_paper_35618.pdf Download (291kB) | Preview |

## Abstract

In this paper, we study asymmetric information economies consisting of both non-negligible and negligible agents and having ordered Banach spaces as their commodity spaces. In answering a question of Herves-Beloso and Moreno-Garcia in [17], we establish a characterization of Walrasian expectations allocations by the veto power of the grand coalition. It is also shown that when an economy contains only negligible agents a Vind's type theorem on the private core with the exact feasibility can be restored. This solves a problem of Pesce in [20].

Item Type: | MPRA Paper |
---|---|

Original Title: | Infinite dimensional mixed economies with asymmetric information |

English Title: | Infinite dimensional mixed economies with asymmetric information |

Language: | English |

Keywords: | Asymmetric information; Exactly feasible; Ex-post core; mixed economy; NY-fine core; NY-private core; Robustly efficient allocation; NY-strong fine core; RW-fine core; Walrasian expectations allocation |

Subjects: | C - Mathematical and Quantitative Methods > C7 - Game Theory and Bargaining Theory > C71 - Cooperative Games D - Microeconomics > D4 - Market Structure, Pricing, and Design > D41 - Perfect Competition D - Microeconomics > D8 - Information, Knowledge, and Uncertainty > D82 - Asymmetric and Private Information ; Mechanism Design D - Microeconomics > D5 - General Equilibrium and Disequilibrium > D51 - Exchange and Production Economies D - Microeconomics > D4 - Market Structure, Pricing, and Design > D43 - Oligopoly and Other Forms of Market Imperfection |

Item ID: | 35618 |

Depositing User: | Jiling Cao |

Date Deposited: | 29 Dec 2011 04:32 |

Last Modified: | 28 Sep 2019 02:36 |

References: | 1. C.D. Aliprantis, K.C. Border, Infinite dimensional analysis: A hitchhiker's guide, Third edition, Springer, Berlin, 2006. 2. L. Angeloni and V. Filipe Martins-da-Rocha, Large economies with differential information and without disposal, Econ. Theory {\bf 38} (2009), 263--286. 3. K.J. Arrow, G. Debreu, Existence of an equilibrium for a competitive economy, Econometrica {\bf 22} (1954), 265--290. 4. R.J. Aumann, Markets with a continuum of traders, Econometrica {\bf 32} (1964), 39--50. 5. A. Bhowmik, J. Cao, On the core and Walrasian expectations equilibrium in infinite dimensional commodity spaces, Econ. Theory, Submitted. 6. G. Debreu, Theory of value: an axiomatic analysis of economic equilibrium, John Wiley \& Sons, New York, 1959. 7. G. Debreu, H.E. Scarf, A limit theorem on the core of an economy, Int. Econ. Rev. {\bf 4} (1963), 235--246. 8. A. De Simone, M.G. Graziano, Cone conditions in oligopolistic market models, Math. Social Sci. {\bf 45} (2003), 53--73. 9. E. Einy, D. Moreno, B. Shitovitz, On the core of an economy with differential information, J. Econ. Theory {\bf 94} (2000), 262--270. 10. E. Einy, D. Moreno, B. Shitovitz, Competitive and core allocations in large economies with differential information, Econ. Theory {\bf 18} (2001), 321-- 332. 11. \"{O}. Evren, F. H\"{u}sseinov, Theorems on the core of an economy with infinitely many commodities and consumers, J. Math. Econ. {\bf 44} (2008), 1180--1196. 12. J. Greenberg, B. Shitovitz, A simple proof of the equivalence theorem for olipogolistic mixed markets, J. Math. Econ. {\bf 15} (1986), 79--83. 13. B. Grodal, A second remark on the core of an atomless economy, Econometrica {\bf 40} (1972), 581--583. 14. C. Herv\'{e}s-Beloso, E. Moreno-Garc\'{i}a, C. N\'{u}\~{n}ez-Sanz, M.R. P\'{a}scoa, Blocking efficiency of small coalitions in myopic economies, J. Econ. Theory {\bf 93} (2000), 72--86. 15. C. Herv\'{e}s-Beloso, E. Moreno-Garc\'{i}a, N.C. Yannelis, An equivalence theorem for a differential information economy, J. Math. Econ. {\bf 41} (2005), 844--856. 16. C. Herv\'{e}s-Beloso, E. Moreno-Garc\'{i}a, N.C. Yannelis, Characterization and incentive compatibility of Walrasian expectations equilibrium in infinite dimensional commodity spaces, Econ. Theory {\bf 26} (2005), 361--381. 17. C. Herv\'{e}s-Beloso, E. Moreno-Garc\'{i}a, Competitive equilibria and the grand coalition, J. Math. Econ. {\bf 44} (2008), 697--706. 18. C. Herv\'{e}s-Beloso, C. Meo, E. Moreno-Garc\'{i}a, On core solutions in economies with assymetric information, MPRA Paper No. 30258, 2011. 19. L.W. McKenzie, On the existence of general equilibrium for a competitive market, Econometrica {\bf 27} (1959), 54--71. 20. M. Pesce, On mixed markets with asymmetric information, Econ. Theory {\bf 45} (2010), 23--53. 21. R. Radner, Competitive equilibrium under uncertainty, Econometrica {\bf 36} (1968), 31--58. 22. R. Radner, Equilibrium under uncertainty, pp. 923--1006 in Handbook of Mathematical Economics, Vol 2, North Holland, Amsterdam, 1982. 23. D. Schmeidler, A remark on the core of an atomless economy, Econometrica {\bf 40} (1972), 579--580. 24. B. Shitovitz, Oligopoly in markets with a continuum of traders, Econometrica {\bf 41} (1973), 467--501. 25. J.J. Uhl, Jr., The range of a vector valued measure, Proc. Amer. Math. Soc. {\bf 23} (1969), 158-163. 26. K. Vind, A third remark on the core of an atomless economy, Econometrica {\bf 40} (1972), 585--586. 27. R. Wilson, Information, efficiency, and the core of an economy, Econometrica {\bf 46} (1978), 807--816. 28. N.C. Yannelis, The core of an economy with differential information, Econ. Theory {\bf 1} (1991), 183--197. |

URI: | https://mpra.ub.uni-muenchen.de/id/eprint/35618 |