Herrera Gómez, Marcos and Ruiz Marín, Manuel and Mur Lacambra, Jesús and Paelinck, Jean (2010): A Non-Parametric Approach to Spatial Causality.
Preview |
PDF
MPRA_paper_36768.pdf Download (329kB) | Preview |
Abstract
The purpose of this paper is to show the capacity of a new non-parametric test based on symbolic entropy and symbolic dynamics to deal with the detection of linear and non-linear spatial causality. The good performance of the new test in detecting spatial causality and causal weighting matrix is notable and gives rise to an expectation that it may form a adequate tool for constructive specification searches.
Item Type: | MPRA Paper |
---|---|
Original Title: | A Non-Parametric Approach to Spatial Causality |
Language: | English |
Keywords: | Causality; Spatial Dependence; Spatial Weight Matrices |
Subjects: | C - Mathematical and Quantitative Methods > C1 - Econometric and Statistical Methods and Methodology: General > C12 - Hypothesis Testing: General C - Mathematical and Quantitative Methods > C2 - Single Equation Models ; Single Variables > C21 - Cross-Sectional Models ; Spatial Models ; Treatment Effect Models ; Quantile Regressions C - Mathematical and Quantitative Methods > C0 - General > C01 - Econometrics |
Item ID: | 36768 |
Depositing User: | marcos herrera |
Date Deposited: | 19 Feb 2012 05:50 |
Last Modified: | 26 Sep 2019 21:12 |
References: | Anselin, L. (1988). Spatial Econometrics: Methods and Models. Dordrecht, Kluwer. Anselin, L. and R. Florax (eds.) (1995). New Directions in Spatial Econometrics. Berlin, Springer. Anselin, L., Florax, R. and S. Rey (eds.) (2004). Advances in Spatial Econometrics: Methodology, Tools and Applications. Berlin, Springer. Ancona, N., D. Marinazzo and S. Stramaglia (2004): Radial Basis Function Approach to Nonlinear Granger Causality in Time Series, Physical Review E 70 056221. Arbia, G. (2006). Spatial Econometrics. Statistical Foundations and Applications to Regional Convergence. Berlin, Springer. Diks, C. and V. Panchenko (2006): A New Statistic and Practical Guidelines for Nonparametric Granger Causality Testing. Journal of Economic Dynamics and Control 30, 1647-1669. Getis, A., Mur, J. and H. Zoller (eds.) (2004). Spatial Econometrics and Spatial Statistics. Houndmills, Macmillan. Griffith, D. (2003). Spatial Autocorrelation and Spatial Filtering: Gaining Understanding through Theory and Scientific Visualization. Berlin, Springer. Hong, Y. and H. White, H. (2005): Asymptotic Distribution Theory for Nonparametric Entropy Measures of Serial Dependence. Econometrica 73, 837-901. Joe, H. (1989a): Relative Entropy Measures of Multivariate Dependence. Journal of the American Statistical Association 84, 157-164. Joe, H. (1989b): Estimation of Entropy and Other Functionals of a Multivariate Density. Annals of the Institute of Statistical Mathematics 41, 683-697. Lesage, J. and Pace, K. (2009): Introduction to Spatial Econometrics. London, Chapman & Hall/CRC. López, F., Matilla-García, M., Mur, J., and M. Ruiz Marín (2010): A Non-Parametric Spatial Independence Test Using Symbolic Entropy. Regional Science and Urban Economics 40, 106-115. Manrubia, S., A. Mikhailov and D. Zannette (2004): Emergence of Dynamical Order: Synchronization Phenomena in Complex Systems. Singapore: World Scientific Publishing. Marschinski, R. and H. Kantz (2002): Analysing the Information Flow between Financial Time Series- An Improved Estimator of Transfer Entropy. European Physical Journal B 30, 275-281. Matilla-García, M. and M. Ruiz Marín (2008): A Non-Parametric Independence Test Using Permutation Entropy. Journal of Econometrics 144, 139-155. Paelinck, J. and L. Klaassen (1979): Spatial Econometrics. Farnborough: Saxon House. Pearl, J. (2000). Causality: Models, Reasoning, and Inference. Cambridge: Cambridge University Press. Schreiber, T. (2000): Measuring Information Transfer. Physical Review Letters 85, 461-464. Suppes, P. (1970): A probabilistic Theory of Causality (Acta Philosophica Fennica. XXIV). Amsterdam: North-Holland. Tiefelsdorf, M. (2000): Modelling Spatial Processes. The Identification and Analysis of Spatial Relationships in Regression Residuals by Means of Moran’s I. Springer: Berlin. Upton, G. and B. Fingleton (1985): Spatial Data Analysis by Example, Vol. 1. New York, Wiley. Wiener, N. (1956): The Theory of Prediction. In Beckenbach, E. (ed.): Modern Mathematics for Engineers. New York: McGraw. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/36768 |