Ubilava, David and Helmers, C Gustav (2012): Forecasting ENSO with a smooth transition autoregressive model.
Preview |
PDF
MPRA_paper_36890.pdf Download (861kB) | Preview |
Abstract
This study examines the benets of nonlinear time series modelling to improve forecast accuracy of the El Nino Southern Oscillation (ENSO) phenomenon. The paper adopts a smooth transition autoregressive (STAR) modelling framework to assess the potentially regime-dependent dynamics of sea surface temperature anomaly. The results reveal STAR-type nonlinearities in ENSO dynamics, resulting in superior out-of-sample forecast performance of STAR over the linear autoregressive models. The advantage of nonlinear models is especially apparent in the short- and intermediate-term forecasts. These results are of interest to researchers and policy makers in the elds of climate dynamics, agricultural production, and environmental management.
Item Type: | MPRA Paper |
---|---|
Original Title: | Forecasting ENSO with a smooth transition autoregressive model |
Language: | English |
Keywords: | El Nino Southern Oscillation; Out-of-Sample Forecasting; Smooth Transition Autoregression |
Subjects: | C - Mathematical and Quantitative Methods > C5 - Econometric Modeling > C53 - Forecasting and Prediction Methods ; Simulation Methods C - Mathematical and Quantitative Methods > C2 - Single Equation Models ; Single Variables > C22 - Time-Series Models ; Dynamic Quantile Regressions ; Dynamic Treatment Effect Models ; Diffusion Processes Q - Agricultural and Natural Resource Economics ; Environmental and Ecological Economics > Q5 - Environmental Economics > Q54 - Climate ; Natural Disasters and Their Management ; Global Warming |
Item ID: | 36890 |
Depositing User: | David Ubilava |
Date Deposited: | 24 Feb 2012 14:29 |
Last Modified: | 26 Sep 2019 09:49 |
References: | Adams, R., C. Chen, B. McCarl, and R. Weiher (1999). The Economic Consequences of ENSO Events for Agriculture. Climate Research 13 (3), 165-172. An, S. (2009). A Review of Interdecadal Changes in the Nonlinearity of the El Nino - Southern Oscillation. Theoretical and Applied Climatology 97 (1), 29-40. An, S. and F. Jin (2004). Nonlinearity and Asymmetry of ENSO. Journal of Climate 17 (12), 2399-2412. Bacon, D. and D. Watts (1971). Estimating the Transition between Two Intersecting Straight Lines. Biometrika 58 (3), 525-534. Berliner, L., C. Wikle, and N. Cressie (2000). Long-Lead Prediction of Pacific SSTs via Bayesian Dynamic Modeling. Journal of Climate 13 (22), 3953-3968. Boucharel, J., B. Dewitte, Y. du Penhoat, B. Garel, S. Yeh, and J. Kug (2011). ENSO Nonlinearity in a Warming Climate. Climate Dynamics 37, 2045-2065. Brunner, A. (2002). El Nino and World Primary Commodity Prices: Warm Water or Hot Air? Review of Economics and Statistics 84 (1), 176-183. Carlson, R., D. Todey, and S. Taylor (1996). Midwestern Corn Yield and Weather in Relation to Extremes of the Southern Oscillation. Journal of Production Agriculture 9 (3), 347-352. Davies, R. (1977). Hypothesis Testing when a Nuisance Parameter is Present only under the Alternative. Biometrika 64 (2), 247-254. Davies, R. (1987). Hypothesis Testing when a Nuisance Parameter is Present only under the Alternative. Biometrika 74 (1), 33-43. Deng, Z. and Y. Tang (2009). The Retrospective Prediction of ENSO from 1881 to 2000 by a Hybrid Coupled Model: (II) Interdecadal and Decadal Variations in Predictability. Climate Dynamics 32 (2), 415-428. Diebold, F. and R. Mariano (1995). Comparing Predictive Accuracy. Journal of Business & Economic Statistics 13 (3), 253-263. Eitrheim, O. and T. Terasvirta (1996). Testing the Adequacy of Smooth Transition Autoregressive Models. Journal of Econometrics 74 (1), 59-75. Glantz, M. (2001). Currents of Change: Impacts of El Nino and La Nina on Climate and Society. Cambridge University Press. Granger, C. and T. Terasvirta (1993). Modelling Nonlinear Economic Relationships. Oxford University Press, USA. Halide, H. and P. Ridd (2008). Complicated ENSO Models Do Not Significantly Outperform Very Simple ENSO Models. International Journal of Climatology 28 (2), 219-233. Hall, A., J. Skalin, and T. Terasvirta (2001). A Nonlinear Time Series Model of El Nino. Environmental Modelling and Software 16 (2), 139-146. Hamilton, J. D. (1989). A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle. Econometrica 57 (2), 357-384. Handler, P. (1990). USA Corn Yields, The El Nino and Agricultural Drought: 1867-1988. International Journal of Climatology 10 (8), 819-828. Hansen, J., A. Hodges, and J. Jones (1998). ENSO Influences on Agriculture in the Southeastern United States. Journal of Climate 11 (3), 404-411. Harvey, D., S. Leybourne, and P. Newbold (1997). Testing the Equality of Prediction Mean Squared Errors. International Journal of Forecasting 13 (2), 281-291. Hsiang, S., K. Meng, and M. Cane (2011). Civil Conflicts are Associated with the Global Climate. Nature 476, 438-441. Keppenne, C. (1995). An ENSO Signal in Soybean Futures Prices. Journal of Climate 8 (6), 1685-1689. Kim, M. and B. McCarl (2005). The Agricultural Value of Information on the North Atlantic Oscillation: Yield and Economic Effects. Climatic Change 71 (1), 117-139. Kirtman, B. and P. Schopf (1998). Decadal Variability in ENSO Predictability and Prediction. Journal of Climate 11 (11), 2804-2822. Kuan, C.-M. and H. White (1994). Artificial Neural Networks: An Econometric Perspective. Econometric Reviews 13 (1), 1-91. Legler, D., K. Bryant, and J. O'Brien (1999). Impact of ENSO-related Climate Anomalies on Crop Yields in the U.S. Climatic Change 42 (2), 351-375. Lundbergh, S. and T. Terasvirta (2004). Forecasting with Smooth Transition Autoregressive Models. In M. P. Clements and D. F. Hendry (Eds.), A Companion to Economic Forecasting, pp. 485-509. Blackwell Publishing. Luukkonen, R., P. Saikkonen, and T. Terasvirta (1988). Testing Linearity against Smooth Transition Autoregressive Models. Biometrika 75 (3), 491-499. Milas, C. and P. Rothman (2008). Out-of-Sample Forecasting of Unemployment Rates with Pooled STVECM Forecasts. International Journal of Forecasting 24 (1), 101-121. Newey, W. and D. Kenneth (1987). A Simple, Positive Semi-definite, Heteroskedasticity and Autocorrelation Consistent Covariance Matrix. Econometrica 55 (3), 703-708. Pielke Jr, R. and C. Landsea (1999). La Nina, El Nino, and Atlantic Hurricane Damages in the United States. Bulletin of the American Meteorological Society 80 (10), 2027-2034. Sarantis, N. (1999). Modeling Non-linearities in Real Effective Exchange Rates. Journal of International Money and Finance 18 (1), 27-45. Skalin, J. and T. Terasvirta (2002). Modeling Asymmetries and Moving Equilibria in Unemployment Rates. Macroeconomic Dynamics 6 (2), 202-241. Solow, A., R. Adams, K. Bryant, D. Legler, J. O'Brien, B. McCarl, W. Nayda, and R. Weiher (1998). The Value of Improved ENSO Prediction to US Agriculture. Climatic Change 39 (1), 47-60. Swanson, N. (1998). Money and Output Viewed through a Rolling Window. Journal of Monetary Economics 41 (3), 455-473. Tang, Y. and W. Hsieh (2002). Hybrid Coupled Models of the Tropical Pacific: II ENSO prediction. Climate Dynamics 19 (3), 343-353. Tangang, F., B. Tang, A. Monahan, and W. Hsieh (1998). Forecasting ENSO Events: A Neural Network - Extended EOF Approach. Journal of Climate 11 (1), 29-41. Terasvirta, T. (1994). Specification, Estimation, and Evaluation of Smooth Transition Autoregressive Models. Journal of the American Statistical Association 89 (425), 208-218. Terasvirta, T. (1995). Modelling Nonlinearity in US Gross National Product 1889-1987. Empirical Economics 20 (4), 577-597. Terasvirta, T. and H. Anderson (1992). Characterizing Nonlinearities in Business Cycles using Smooth Transition Autoregressive Models. Journal of Applied Econometrics 7, S119-S136. Terasvirta, T., D. Van Dijk, and M. Medeiros (2005). Linear Models, Smooth Transition Autoregressions, and Neural Networks for Forecasting Macroeconomic Time Series: A Re-examination. International Journal of Forecasting 21 (4), 755-774. Tong, H. (1990). Non-linear Time Series: A Dynamical System Approach. Oxford University Press. Tsay, R. (1989). Testing and Modeling Threshold Autoregressive Processes. Journal of the American Statistical Association 84 (405), 231-240. Ubilava, D. (2012). El Nino, La Nina, and World Coffee Price Dynamics. Agricultural Economics 43 (1), 17-26. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/36890 |