Piotr, Maćkowiak (2004): Some remarks on lower hemicontinuity of convex multivalued mappings. Published in: Economic Theory , Vol. 28, No. 1 (2006): pp. 227-233.
Preview |
PDF
MPRA_paper_41917.pdf Download (275kB) | Preview |
Abstract
For a multifunction a condition sufficient for lower hemicontinuity is presented. It is shown that under convexity of graph it is possible for a multifunction to be not continuous only when a special representation of points of its domain is not feasible.
Item Type: | MPRA Paper |
---|---|
Original Title: | Some remarks on lower hemicontinuity of convex multivalued mappings |
Language: | English |
Keywords: | Convexity; Polytope; Lower hemicontinuity |
Subjects: | C - Mathematical and Quantitative Methods > C6 - Mathematical Methods ; Programming Models ; Mathematical and Simulation Modeling > C61 - Optimization Techniques ; Programming Models ; Dynamic Analysis |
Item ID: | 41917 |
Depositing User: | Piotr Maćkowiak |
Date Deposited: | 13 Oct 2012 15:11 |
Last Modified: | 28 Sep 2019 21:26 |
References: | Berge C.: Topological spaces. Oliver and Boyd, Edinburgh and London: 1963 Dutta P., Mitra T.: On Continuity of the Utility Function in Intertemporal Allocation Models: an Example. International Economic Review 30, 527-536 (1989) Gale D., Klee V., Rockafellar T.: Convex Functions on Convex Polytopes. Proceedings of the American Mathematical Society 19, 867-873 (1968) Florenzano M., Le Van C.: Finite Dimensional Convexity and Optimization. Berlin New~York: Springer 2001 Lucas R., Stokey N.: Recursive Methods in Economic Dynamics. Cambridge New~York: University Press 1989 McKenzie L.: Optimal economic growth, turnpike theorems and comparative dynamics. In Arrow, K., Intriligator, M. (eds.) Handbook of Mathematical Economics, Vol. III, pp. 1281-1353, Amsterdam New~York Oxford: North-Holland 1986 Rockafellar R.T.: Convex Analysis. Princeton New Jersey: Princeton University Press 1970 Rockafellar R.T., Wets R.: Variational Analysis. Berlin Heidelberg New York: Springer 1998 |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/41917 |