Leduc, Guillaume (2012): European Option General First Order Error Formula.
Preview |
PDF
MPRA_paper_42015.pdf Download (330kB) | Preview |
Abstract
We study the value of European security derivatives in the Black-Scholes model when the underlying asset ξ is approximated by random walks ξ⁽ⁿ⁾. We obtain an explicit error formula, up to a term of order O(n^{-(3/2)}), which is valid for general approximating schemes and general payoff functions. We show how this error formula can be used to find random walks ξ⁽ⁿ⁾ for which option values converge at a speed of O(n^{-(3/2)}).
Item Type: | MPRA Paper |
---|---|
Original Title: | European Option General First Order Error Formula |
Language: | English |
Keywords: | European options; approximation scheme; error formula; Black-Scholes |
Subjects: | G - Financial Economics > G1 - General Financial Markets > G13 - Contingent Pricing ; Futures Pricing |
Item ID: | 42015 |
Depositing User: | Guillaume Leduc |
Date Deposited: | 17 Oct 2012 19:52 |
Last Modified: | 01 Oct 2019 04:57 |
References: | Carbone, R., Binomial approximation of Brownian motion and its maximum, Statistics and Probability Letters 69 no. 3, 271--285 (2004) Chang, L.B. and Palmer, K., Smooth convergence in the binomial model, Finance and Stochastics 11 no. 1, 91--105 (2007) Cox, J.C., Ross, S.A. and Rubinstein, M., Option pricing: a simplified approach, Journal of Financial Economics 7, 229--263 (1979) Diener, F. and Diener, M., Asymptotics of the price oscillations of a European call option in a tree model, Mathematical finance 14 no. 2, 271--293 (2004) Diener, F. and Diener, M., Higher-order terms for the de Moivre-Laplace theorem, Contemporary Mathematics 373 191--206 (2005) Dupuis, P. and Wang, H., Optimal stopping with random intervention times, Advances in Applied probability 34 no. 1, 141--157 (2002) Dupuis, P. and Wang, H., On the convergence from discrete to continuous time in an optimal stopping problem, Annals of Applied Probability 1339--1366 (2005) Heston, S. and Zhou, G., On the rate of convergence of discrete-time contingent claims, Mathematical Finance 10 no. 1, 53--75 (2000) Hu, B., Liang, J. and Jiang, L., Optimal convergence rate of the explicit finite difference scheme for American option valuation, Journal of Computational and Applied Mathematics 230 no. 2, 583--599 (2009) Joshi, M.S., Achieving smooth asymptotics for the prices of European options in binomial trees, Quantitative Finance 9 no. 2, 171--176 (2009) Joshi, M.S., Achieving higher order convergence for the prices of European options in binomial trees, Mathematical Finance 20 no. 1, 89--103 (2010) Kifer, Y., Error estimates for binomial approximations of game options, Annals of Applied Probability 16 no. 2, 984--1033 (2006) Korn, R., and Müller, S., The optimal-drift model: an accelerated binomial scheme, Finance and Stochastics, 1--26 (2012) Lamberton, D., Error estimates for the binomial approximation of American put options, The Annals of Applied Probability 8 no. 1, 206--233 (1998) Lamberton, D., Vitesse de convergence pour des approximations de type binomial, Ecole CEA, EDF, INRIA mathématiques financières: modèles économiques et mathématiques des produits dérivés 347--359 (1999) Lamberton, D., Brownian optimal stopping and random walks, Applied Mathematics and Optimization 45 no. 3, 283--324 (2002) Lamberton, D. and Rogers, LCG, Optimal stopping and embedding, Journal of Applied Probability 37 no. 4, 1143--1148 (2000) Leduc, G., Exercisability Randomization of the American Option, Stochastic Analysis and Applications 26 no. 4, 832--855 (2008) Leduc, G., Convergence rate of the binomial tree scheme for continuously paying options, to appear in: Annales des sciences mathématiques du Québec (2012). Leisen, D.P.J., Pricing the American put option: A detailed convergence analysis for binomial models, Journal of Economic Dynamics and Control 22 no. 8-9, 1419--1444 (1998) Leisen, D.P.J. and Reimer, M., Binomial models for option valuation-examining and improving convergence, Applied Mathematical Finance 3 no. 4, 319--346 (1996) Liang, J., Hu, B., Jiang, L. and Bian, B., On the rate of convergence of the binomial tree scheme for American options, Numerische Mathematik 107 no. 2, 333--352 (2007) Lin, J. and Palmer, K., Convergence of barrier option prices in the binomial model, to appear in: Mathematical Finance (2012). Tian, Y., A flexible binomial option pricing model, Journal of Futures Markets 19 no. 7, 817--843 (1999) Walsh, J.B., The rate of convergence of the binomial tree scheme, Finance and Stochastics 7 no. 3, 337--361 (2003) |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/42015 |