Lúcio Godeiro, Lucas (2012): Estimando o VaR (Value-at-Risk) de carteiras via modelos da família GARCH e via Simulação de Monte Carlo.
Preview |
PDF
MPRA_paper_45146.pdf Download (631kB) | Preview |
Preview |
PDF
MPRA_paper_45146.pdf Download (631kB) | Preview |
Abstract
The objective this work is to calculate the VaR of portfolios via GARCH family models with normal and t-student distribution and via Monte Carlo Simulation. It was used three portfolios composite with preferential stocks of five companies of the Ibovespa. The results show that the t distribution adjusts better to data, because the violation ratio of the VaR calculated with t distribution is less violation ratio estimated with normal distribution.
Item Type: | MPRA Paper |
---|---|
Original Title: | Estimando o VaR (Value-at-Risk) de carteiras via modelos da família GARCH e via Simulação de Monte Carlo |
English Title: | Estimating the VaR (Value-at-Risk) of portfolios via GARCH family models and via Monte Carlo Simulation |
Language: | Portuguese |
Keywords: | VaR; GARCH; Monte Carlo Simulation. |
Subjects: | C - Mathematical and Quantitative Methods > C5 - Econometric Modeling > C53 - Forecasting and Prediction Methods ; Simulation Methods G - Financial Economics > G1 - General Financial Markets > G17 - Financial Forecasting and Simulation |
Item ID: | 45146 |
Depositing User: | Professor Lucas Lúcio Godeiro |
Date Deposited: | 17 Mar 2013 15:12 |
Last Modified: | 30 Aug 2024 21:08 |
References: | [1] Araújo, L.M.B., 2009. Composição de fundo de fundos Multimercado – Otimização de carteira pelo método de média – CVaR. Dissertação de Mestrado. FGV. São Paulo-SP. [2] Bezerra, F. O., 2001. Avaliação da Estimativa do Risco de Mercado pela Metodologia Value at Risk (VaR) com Simulação de Monte Carlo. Dissertação de Mestrado em Administração, Recife. [3] Bollerslev, T., 1986. Generalized Autoregressive conditional heteroskedasticity. J. Econometrics 31 307-327. [4] Chela, J.L., Abrahão, J.C., Kamogawa, L.F.O., 2011. Modelos Ortogonais para Estimativa Multivariada de VaR (Value at Risk) para risco de mercado: Um estudo de caso comparativo. Revista de Economia do Mackenzie 9 p.70-93. [5] Cordeiro, F.N.B., 2009. Aplicação da teoria de Cópulas para o cálculo do Value at Risk. Dissertação de Mestrado. FGV. São Paulo-SP. [6] Christoffersen, P. F. Evaluating interval forecasts. International Economic Review, v. 39, p. 841-862, 1998. [7] Daníelsson, D., 2011. Financial risk forecasting, Wiley Finance. [8] Glasserman, P., Heidelberger, P., Shahabuddin, P., Variance Reduction Techniques for Estimating Value-at-Risk. Management Science, Vol. 46, No. 10 (Oct., 2000), pp. 1349-1364. [9] Gaglianone, W.P.,Lima,L.R. e Linton,O., 2008. Evaluating Value-at-Risk Models via Quantile Regressions. Working Paper Series 161. Banco Central do Brasil. [10] Glosten, L.R., Jaganathan, R., Runkle, D. On the relation between the expected value and the volatility of the normal excess return on stocks. Journal of Finance, 48, p.1779-1801, 1993. [11] Huynh, H. T., Lai, V. S., Soumare, I., 2008. Stochastic Simulation and Applications in Finance with MATLAB Programs, Wiley Finance. [12] Jorion, P., 2007. Value-at-Risk: The new benchmark for managing financial risk. McGraw Hill 3rd edition. [14] Jorion, P., 2002. How Informative Are Value-at-Risk Disclosures? The Accouting Review 77 911-931 [15] Kupiec, P., 1995. Techniques for Verifying the Accuracy of Risk Measurement Models. Journal of Derivatives 3, 73-84. [16] Manganelli, S., Engle, R., 2001. Value-at-Risk Models in Finance. Working Paper 75. European Central Bank. [17] Markowitz, H. Portfolio selection. Journal of Finance, junho, pp. 77 – 91, 1952. [18] Nelson, D. B. 1991. Conditional heteroskedasticity in asset returns: A new approach. Econometrica 59 347-370. [19] Taylor, J.W., 2005. Generating Volatility Forecasts from Value at Risk Estimates. Management Science, Vol. 51, No. 5 (May, 2005), pp. 712-725 |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/45146 |