Rendón, Stephanie (2013): Detección de caídas en mercados financieros mediante análisis multifractal (exponentes locales y puntuales de Hölder): Índice accionario IPC y tipo de cambio USD/MXN.
Preview |
PDF
MPRA_paper_47699.pdf Download (478kB) | Preview |
Abstract
The multifractal model has demonstrated properly how to measure the complexity within economic systems when describing a time series with a spectrum; this tool offers the possibility to study local regularity for prior and after market crash detections. The main goal of this work is to show through evolution of Hölder’s exponents and irregular points, how it is possible to study intrinsic market dynamics. For these purposes, Hölder exponents were determined over time series of the Mexico IPC stock index and fx USD/MXN during: 1994-2013 and 1992-2013, respectively.
Item Type: | MPRA Paper |
---|---|
Original Title: | Detección de caídas en mercados financieros mediante análisis multifractal (exponentes locales y puntuales de Hölder): Índice accionario IPC y tipo de cambio USD/MXN |
English Title: | Stock crack detection using multifractal analysis (local and pointwise Hölder exponents): Stock Index of Mexico IPC and FX USD/MXN |
Language: | Spanish |
Keywords: | Hölder exponents, multifractal analysis, irregularity |
Subjects: | C - Mathematical and Quantitative Methods > C1 - Econometric and Statistical Methods and Methodology: General > C14 - Semiparametric and Nonparametric Methods: General C - Mathematical and Quantitative Methods > C5 - Econometric Modeling > C53 - Forecasting and Prediction Methods ; Simulation Methods C - Mathematical and Quantitative Methods > C5 - Econometric Modeling > C58 - Financial Econometrics G - Financial Economics > G1 - General Financial Markets > G14 - Information and Market Efficiency ; Event Studies ; Insider Trading |
Item ID: | 47699 |
Depositing User: | Ms Stephanie Rendón de la Torre |
Date Deposited: | 27 Jun 2013 15:58 |
Last Modified: | 28 Sep 2019 02:07 |
References: | Sornette D. (2003) Why Stock Market Crash, Physics Reports v 378 p 1-100. Mantegna R., Stanley H (2000), An Introduction to Econophysics, Correlations and Complexity in Finance, Cambridge University Press. Johansen, A., Sornette D., Ledoit O. (2000) Crashes as Critical Points, International Journal for Theoretical & Applied Finance, 3(2), p. 219-255. Blackedge J. M., (2010), Systemic Risk Assessment using a Non-stationary Fractional Dynamic Stochastic Model for the Analysis of Economic Signals, ISAST Transactions on Computers and Intelligent Systems, vol: 2, issue: 1, p: 76 - 94, Kuperin Y.A, Schastlivtev R.R. (2001) Modified Holder Exponents Approach to Prediction of the USA Stock Market Critical Points and Crashes, Saint Petersburg State University, Russia. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/47699 |