Demiralay, Sercan and Ulusoy, Veysel (2014): Value-at-risk Predictions of Precious Metals with Long Memory Volatility Models.
Preview |
PDF
MPRA_paper_53229.pdf Download (1MB) | Preview |
Abstract
In this paper, we investigate the value-at-risk predictions of four major precious metals (gold, silver, platinum, and palladium) with long memory volatility models, namely FIGARCH, FIAPARCH and HYGARCH, under normal and student-t innovations’ distributions. For these analyses, we consider both long and short trading positions. Overall, our results reveal that long memory volatility models under student-t distribution perform well in forecasting a one-day-ahead VaR for both long and short positions. In addition, we find that FIAPARCH model with student-t distribution, which jointly captures long memory and asymmetry, as well as fat-tails, outperforms other models in VaR forecasting. Our results have potential implications for portfolio managers, producers, and policy makers.
Item Type: | MPRA Paper |
---|---|
Original Title: | Value-at-risk Predictions of Precious Metals with Long Memory Volatility Models |
English Title: | Value-at-risk Predictions of Precious Metals with Long Memory Volatility Models |
Language: | English |
Keywords: | Long memory, value-at-risk, volatility modeling, precious metals prices |
Subjects: | C - Mathematical and Quantitative Methods > C5 - Econometric Modeling > C53 - Forecasting and Prediction Methods ; Simulation Methods C - Mathematical and Quantitative Methods > C5 - Econometric Modeling > C58 - Financial Econometrics G - Financial Economics > G1 - General Financial Markets > G17 - Financial Forecasting and Simulation |
Item ID: | 53229 |
Depositing User: | Res.Assist Sercan Demiralay |
Date Deposited: | 28 Jan 2014 13:39 |
Last Modified: | 29 Sep 2019 13:52 |
References: | Aloui, C., & Mabrouk, S. (2010). Value-at-risk estimations of energy commodities via long-memory, asymmetry and fat-tailed GARCH models. Energy Policy, 38(5), 2326-2339. Arouri, M. E. H., Hammoudeh, S., Lahiani, A., & Nguyen, D. K. (2012). Long memory and structural breaks in modeling the return and volatility dynamics of precious metals. The Quarterly Review of Economics and Finance, 52(2), 207-218. Baillie, R. T., Bollerslev, T., & Mikkelsen, H. O. (1996). Fractionally integrated generalized autoregressive conditional heteroskedasticity. Journal of econometrics, 74(1), 3-30. Batten, J. A., Ciner, C., & Lucey, B. M. (2010). The macroeconomic determinants of volatility in precious metals markets. Resources Policy, 35(2), 65-71. Baur, G. D. (2012). Asymmetric volatility in the gold market. The Journal of Alternative Investments, 14(4), 26-38. Cheong, C. W. (2009). Modeling and forecasting crude oil markets using ARCH-type models. Energy policy, 37(6), 2346-2355. Chkili, W., Hammoudeh, S., & Nguyen, D. K. (2014). Volatility forecasting and risk management for commodity markets in the presence of asymmetry and long memory. Energy Economics, 41, 1-18. Christie–David, R., Chaudhry, M., & Koch, T. W. (2000). Do macroeconomics news releases affect gold and silver prices?. Journal of Economics and Business, 52(5), 405-421. Christoffersen, P. F., & Diebold, F. X. (2000). How relevant is volatility forecasting for financial risk management?. Review of Economics and Statistics, 82(1), 12-22. Ciner, C. (2001). On the long run relationship between gold and silver prices A note. Global Finance Journal, 12(2), 299-303. Conover, C. M., Jensen, G. R., Johnson, R. R., & Mercer, J. M. (2009). Can precious metals make your portfolio shine?. Journal of Investing, 18(1), 75-86. Davidson, J. (2004). Moment and memory properties of linear conditional heteroscedasticity models, and a new model. Journal of Business & Economic Statistics, 22(1). Diamandis, P. F., Drakos, A. A., Kouretas, G. P., & Zarangas, L. (2011). Value-at-risk for long and short trading positions: Evidence from developed and emerging equity markets. International Review of Financial Analysis, 20(3), 165-176. Dickey, D. A., & Fuller, W. A. (1979). Distribution of the estimators for autoregressive time series with a unit root. Journal of the American statistical association, 74(366a), 427-431. Ding, Z., Granger, C. W., & Engle, R. F. (1993). A long memory property of stock market returns and a new model. Journal of empirical finance, 1(1), 83-106. Engle, R. F., & Manganelli, S. (2004). CAViaR: Conditional autoregressive value at risk by regression quantiles. Journal of Business & Economic Statistics,22(4), 367-381. Geweke, J., & Porter‐Hudak, S. (1983). The estimation and application of long memory time series models. Journal of time series analysis, 4(4), 221-238. Giot, P., & Laurent, S. (2003). Market risk in commodity markets: a VaR approach. Energy Economics, 25(5), 435-457. Hammoudeh, S. M., Yuan, Y., McAleer, M., & Thompson, M. A. (2010). Precious metals–exchange rate volatility transmissions and hedging strategies. International Review of Economics & Finance, 19(4), 633-647. Hammoudeh, S., Malik, F., & McAleer, M. (2011). Risk management of precious metals. The Quarterly Review of Economics and Finance, 51(4), 435-441. Hurst, H. E. (1951). Long-term storage capacity of reservoirs. Trans. Amer. Soc. Civil Eng., 116, 770-808. Jensen, G. R., Johnson, R. R., & Mercer, J. M. (2002). Tactical asset allocation and commodity futures. The Journal of Portfolio Management, 28(4), 100-111. Kang, S. H., & Yoon, S. M. (2012). Modelling and forecasting the volatility of petroleum futures prices. Energy Economics. Kupiec, P. H. (1995). Techniques for verifying the accuracy of risk measurement models. THE J. OF DERIVATIVES, 3(2). Kwiatkowski, D., Phillips, P. C., Schmidt, P., & Shin, Y. (1992). Testing the null hypothesis of stationarity against the alternative of a unit root: How sure are we that economic time series have a unit root?. Journal of econometrics, 54(1), 159-178. Lo, A.W. (1991). Long term memory in stock market prices. Econometrica 59, 1279-1313 Phillips, P. C., & Perron, P. (1988). Testing for a unit root in time series regression. Biometrika, 75(2), 335-346. Robinson, P. M., & Henry, M. (1999). Long and short memory conditional heteroskedasticity in estimating the memory parameter of levels. Econometric theory, 15(3), 299-336. Sadorsky, P. (2006). Modeling and forecasting petroleum futures volatility.Energy Economics, 28(4), 467-488. Tang, T. L., & Shieh, S. J. (2006). Long memory in stock index futures markets: A value-at-risk approach. Physica A: Statistical Mechanics and its Applications,366, 437-448. Tse, Y. K. (1998). The conditional heteroscedasticity of the yen-dollar exchange rate. Journal of Applied Econometrics, 13(1), 49-55. Tully, E., & Lucey, B. M. (2007). A power GARCH examination of the gold market. Research in International Business and Finance, 21(2), 316-325. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/53229 |