Arias-R., Omar Fdo. (2014): On the pseudo-equilibrium manifold in semi-algebraic economies with real financial assets.
Preview |
PDF
MPRA_paper_54297.pdf Download (314kB) | Preview |
Abstract
The aim of this paper is to prove that if the consumption set of an economy with incomplete financial markets is semi-algebraic, then the corresponding pseudo-equilibrium manifold is also semi-algebraic. For this, we proceed by constructing an incomplete financial economy with real assets and semi-algebraic utility functions. Then, we show that the spot-equilibrium set and the pseudo-equilibrium set are smooth semi-algebraic manifolds. We extent this results by showing that the pseudo-equilibrium natural projection is a semi-algebraic diffeomorphism in each regular point of the semi-algebraic pseudo-equilibrium manifold. It is directly related with the local determinacy of pseudo-equilibrium.
Item Type: | MPRA Paper |
---|---|
Original Title: | On the pseudo-equilibrium manifold in semi-algebraic economies with real financial assets |
English Title: | On the pseudo-equilibrium manifold in semi-algebraic economies with real financial assets |
Language: | English |
Keywords: | semi-algebraic, finance, spot-equilibrium, pseudo-equilibrium |
Subjects: | D - Microeconomics > D5 - General Equilibrium and Disequilibrium > D50 - General D - Microeconomics > D5 - General Equilibrium and Disequilibrium > D51 - Exchange and Production Economies D - Microeconomics > D5 - General Equilibrium and Disequilibrium > D52 - Incomplete Markets |
Item ID: | 54297 |
Depositing User: | Omar F. Arias |
Date Deposited: | 10 Mar 2014 18:51 |
Last Modified: | 01 Oct 2019 15:23 |
References: | 1) Blume, L. and Zame, W. (1992). The algebraic geometry of competitive equilibrium. Economic theory and international trade; essays in memoriam J. Trout Rader, ed. por W. Neuefeind y R. Reizman, Springer-Verlag, Berlin. 2) Blume, L. and Zame, W. (1994). The algebraic geometry of perfect and sequential equilibrium. Econometrica 62, No. 4, pp. 783-794. 3) Bochnak, J., Coste, M. and Roy, M. (1998). Real Algebraic Geometry. Springer Verlag-Berlin. 4) Chichilnisky, G. and Heal, G. (1996). The existence and structure of the pseudo-equilibrium manifold in incomplete asset markets. Journal of mathematical economics vol. 26, 171-186. 5) Chichilnisky, G. (1998). Topology and invertible maps. Advances in applied mathematics 21, 113-123. 6) Debreu, G. (1970). Economies with a finite set of equilibria. Econometrica 38, 387-392. 7) Villanacci, A., Carosi, L., Benevieri, P. and Battinelli, A. (2002). Differential topology and general equilibrium with complete and incomplete markets. Kluwer academic publishers. 8) Kubler, F. and Schmedders, K. (2010). Competitive equilibria in semi-algebraic economies. Journal of economic theory 145, 301-330. 9) Zhou, Y. (1997). Genericity analysis on the pseudo-equilibrium manifold. Journal of economic theory 73, 79-92. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/54297 |