Jin, Xin and Maheu, John M (2014): Bayesian Semiparametric Modeling of Realized Covariance Matrices.
Preview |
PDF
MPRA_paper_60102.pdf Download (828kB) | Preview |
Abstract
This paper introduces several new Bayesian nonparametric models suitable for capturing the unknown conditional distribution of realized covariance (RCOV) matrices. Existing dynamic Wishart models are extended to countably infinite mixture models of Wishart and inverse-Wishart distributions. In addition to mixture models with constant weights we propose models with time-varying weights to capture time dependence in the unknown distribution. Each of our models can be combined with returns to provide a coherent joint model of returns and RCOV. The extensive forecast results show the new models provide very significant improvements in density forecasts for RCOV and returns and competitive point forecasts of RCOV.
Item Type: | MPRA Paper |
---|---|
Original Title: | Bayesian Semiparametric Modeling of Realized Covariance Matrices |
English Title: | Bayesian Semiparametric Modeling of Realized Covariance Matrices |
Language: | English |
Keywords: | multi-period density forecasts, inverse-Wishart distribution, beam sampling, hierarchical Dirichlet process, infinite hidden Markov model |
Subjects: | C - Mathematical and Quantitative Methods > C1 - Econometric and Statistical Methods and Methodology: General > C11 - Bayesian Analysis: General C - Mathematical and Quantitative Methods > C1 - Econometric and Statistical Methods and Methodology: General > C14 - Semiparametric and Nonparametric Methods: General C - Mathematical and Quantitative Methods > C3 - Multiple or Simultaneous Equation Models ; Multiple Variables > C32 - Time-Series Models ; Dynamic Quantile Regressions ; Dynamic Treatment Effect Models ; Diffusion Processes ; State Space Models C - Mathematical and Quantitative Methods > C5 - Econometric Modeling > C58 - Financial Econometrics G - Financial Economics > G1 - General Financial Markets > G17 - Financial Forecasting and Simulation |
Item ID: | 60102 |
Depositing User: | John Maheu |
Date Deposited: | 26 Nov 2014 06:12 |
Last Modified: | 27 Sep 2019 19:12 |
References: | Andersen, T. G. & Bollerslev, T. (1998), ‘Answering the skeptics: Yes, standard volatility models do provide accurate forecasts’, International Economic Review 39(4), 885–905. Andersen, T. G., Bollerslev, T., Diebold, F. X. & Labys, P. (2003), ‘Modeling and forecasting realized volatility’, Econometrica 71(2), 579–625. Asai, M. & McAleer, M. (2009), ‘The structure of dynamic correlations in multivariate stochastic volatility models’, Journal of Econometrics 150(2), 182 – 192. Asai, M. & So, M. K. P. (2013), ‘Stochastic covariance models’, Journal of the Japan Statistical Society 43(2), 127–162. Barndorff-Nielsen, O. E., Hansen, P. R., Lunde, A. & Shephard, N. (2011), ‘Multivariate realised kernels: Consistent positive semi-definite estimators of the covariation of equity prices with noise and non-synchronous trading’, Journal of Econometrics 162(2), 149–169. Barndorff-Nielsen, O. E. & Shephard, N. (2004), ‘Econometric analysis of realized covariation: High frequency based covariance, regression, and correlation in financial economics’, Econometrica 72(3), 885–925. Bassetti, F., Casarin, R. & Leisen, F. (2014), ‘Beta-product dependent Pitman-Yor processes for Bayesian inference’, Journal of Econometrics 180(1), 49 – 72. Bauer, G. H. & Vorkink, K. (2011), ‘Forecasting multivariate realized stock market volatility’, Journal of Econometrics 160(1), 93 – 101. Bauwens, L., Braione, M. & Storti, G. (2014), Forecasting comparison of long term component dynamic models for realized covariance matrices. CORE Discussion Paper 2014/53. Bonato, M., Caporin, M. & Ranaldo, A. (2008), Forecasting realized (co)variances with a block structure Wishart autoregressive model. Available at SSRN: http://ssrn.com/abstract=1282254. Burda, M., Harding, M. & Hausman, J. (2008), ‘A Bayesian mixed logit–probit model for multinomial choice’, Journal of Econometrics 147(2), 232 – 246. Chib, S. (1996), ‘Calculating posterior distributions and modal estimates in Markov mixture models’, Journal of Econometrics 75, 79–97. Chib, S. & Greenberg, E. (2010), ‘Additive cubic spline regression with Dirichlet process mixture errors’, Journal of Econometrics 156(2), 322 – 336. Chiriac, R. & Voev, V. (2011), ‘Modelling and forecasting multivariate realized volatility’, Journal of Applied Econometrics 26(6), 922–947. Conley, T. G., Hansen, C. B., McCulloch, R. E. & Rossi, P. E. (2008), ‘A semi-parametric Bayesian approach to the instrumental variable problem’, Journal of Econometrics 144(1), 276 – 305. Corsi, F., Peluso, S. & Audrino, F. (2013), Missing in asynchronicity: A Kalman–EM approach for multivariate realized covariance estimation. Available at SSRN: http://ssrn.com/abstract=2000996. Delatola, E.-I. & Griffin, J. (2013), ‘A Bayesian semiparametric model for volatility with a leverage effect’, Computational Statistics & Data Analysis 60(0), 97 – 110. Dufays, A. (2012), ‘Infinite state Markov switching for dynamic volatility and correlation models’, CORE discussion paper 2012/43 . Escobar, M. & West, M. (1995), ‘Bayesian density estimation and inference using mixtures’, Journal of the American Statistical Association 90, 577–588. Fox, E. B. & West, M. (2011), Autoregressive models for variance matrices: Stationary inverse Wishart processes. ArXiv e-prints, http://arxiv.o/abs/1107.5239. Fox, E., Sudderth, E., Jordan, M. & Willsky, A. (2011), ‘A sticky HDP-HMM with application to speaker diarization’, Annals of Applied Statistics 5, 1020–1056. Golosnoy, V., Gribisch, B. & Liesenfeld, R. (2012), ‘The conditional autoregressive Wishart model for multivariate stock market volatility’, Journal of Econometrics 167(1), 211–223. Gourieroux, C., Jasiak, J. & Sufana, R. (2009), ‘The Wishart autoregressive process of multivariate stochastic volatility’, Journal of Econometrics 150, 167–181. Griffin, J. E. & Steel, M. F. J. (2006), ‘Order-based dependent Dirichlet processes’, Journal of the American Statistical Association 101(473), 179–194. Griffin, J. & Steel, M. (2011), ‘Stick-breaking autoregressive processes’, Journal of Econometrics 162(2), 383 – 396. Hamilton, J. D. (1989), ‘A new approach to the economic analysis of non-stationary time series and the business cycle’, Econometrica 57, 357–384. Hansen, P. R., Lunde, A. & Voev, V. (2013), ‘Realized beta GARCH: A multivariate GARCH model with realized measures of volatility’, forthcoming Journal of Econometrics . Hautsch, N., Kyj, L. M. & Oomen, R. C. A. (2012), ‘A blocking and regularization approach to high-dimensional realized covariance estimation’, Journal of Applied Econometrics 27(4), 625–645. Hirano, K. (2002), ‘Semiparametric Bayesian inference in autoregressive panel data models’, Econometrica 70, 781–799. Janusa, P., Lucas, A. & Opschoor, A. (2014), New HEAVY models for fat-tailed returns and realized covariance kernels. Tinbergen Institute Discussion Paper 2014-073. Jensen, M. J. & Maheu, J. M. (2013a), ‘Bayesian semiparametric multivariate GARCH modeling’, Journal of Econometrics 176(1), 3 – 17. Jensen, M. J. & Maheu, J. M. (2013b), Risk, return and volatility feedback: A Bayesian nonparametric analysis. MPRA Working Paper No. 52132. Jin, X. & Maheu, J. M. (2013), ‘Modeling realized covariances and returns’, Journal of Financial Econometrics 11(2), 335–369. Jochmann, M. (2014), ‘Modeling U.S. inflation dynamics: a Bayesian nonparametric approach’, forthcoming Econometric Reviews. Kalli, M. & Griffin, J. E. (2014), ‘Flexible modelling of dependence in volatility processes’, forthcoming Journal of Business & Economic Statistics . Kalli, M., Griffin, J. & Walker, S. (2011), ‘Slice sampling mixture models’, Statistics and Computing 21, 93–105. Lin, M., Liu, C. & Niu, L. (2012), Bayesian estimation of Wishart autoregressive stochastic volatility model. manuscript, WISE, Xiamen University. MacEachern, S. (2000), Dependent Dirichlet processes. Technical Report, Ohio State University. Noureldin, D., Shephard, N. & Sheppard, K. (2012), ‘Multivariate high-frequency-based volatility (HEAVY) models’, Journal of Applied Econometrics 27(6), 907–933. Papaspiliopoulos, O. (2008), A note on posterior sampling from dirichlet mixture models. manuscript, Department of Economics, Universitat Pompeu Fabra. Philipov, A. & Glickman, M. E. (2006), ‘Multivariate stochastic volatility via Wishart processes’, Journal of Business & Economic Statistics 24(3), 313–328. Press, S. J. (2005), Applied multivariate analysis: using Bayesian and frequentist methods of inference, Dover Publications. Rodriguez, A. & Dunson, D. B. (2011), ‘Nonparametric Bayesian models through probit stick-breaking processes’, Bayesian Analysis 6(1), 145–177. Rodriguez, A., Dunson, D. B. & Gelfand, A. E. (2008), ‘The nested Dirichlet process’, Journal of the American Statistical Association 103(483), 1131–1154. Sethuraman, J. (1994), ‘A constructive definition of Dirichlet priors’, Statistica Sinica 4, 639–650. Sheppard, K. & Xu, W. (2014), Factor high-frequency based volatility (HEAVY) models. Available at SSRN: http://ssrn.com/abstract=2442230. Shi, S. & Song, Y. (2014), ‘Identifying speculative bubbles using an infinite hidden Markov model’, forthcoming Journal of Financial Econometrics . Song, Y. (2014), ‘Modelling regime switching and structural breaks with an infinite hidden Markov model’, Journal of Applied Econometrics 29(5), 825–842. Teh, Y., Jordan, M., Beal, M. & Blei, D. (2006), ‘Hierarchical Dirichlet processes’, Journal of the American Statistical Association 101, 1566–1581. Triantafyllopoulos, K. (2012), ‘Multivariate stochastic volatility modelling using Wishart autoregressive processes’, Journal of Time Series Analysis 33(1), 48–60. Uhlig, H. (1997), ‘Bayesian vector autoregressions with stochastic volatility’, Econometrica 65(1), 59–73. Van Gael, J. & Ghahramani, Z. (2010), Nonparametric hidden markov models, in ‘Inference and Estimation in Probabilistic Time-Series Models’, Cambridge University Press, Cambridge. Van Gael, J., Saatci, Y., Teh, Y. & Ghahramani, Z. (2008), Beam sampling for the infinite hidden Markov model, in ‘Proceedings of the 25th International Conference on Machine Learning:’, pp. 1088–1095. Virbickaite, A., Ausn, M. C. & Galeano, P. (2013), ‘Bayesian inference methods for univariate and multivariate GARCH models: A survey’, forthcoming Journal of Economic Surveys. Walker, S. G. (2007), ‘Sampling the Dirichlet mixture model with slices’, Communications in Statistics – Simulation and Computation 36, 45–54. Windle, J. & Carvalho, C. M. (2014), A tractable state-space model for symmetric positive-definite matrices. forthcoming Bayesian Analysis. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/60102 |