Chong, Terence Tai Leung and Poon, Ka-Ho (2014): A New Recognition Algorithm for “Head-and-Shoulders” Price Patterns.
Preview |
PDF
MPRA_paper_60825.pdf Download (230kB) | Preview |
Abstract
Savin et al. (2007) and Lo et al. (2000) analyse the predictive power of head-and-shoulders (HS) patterns in the U.S. stock market. The algorithms in both studies ignore the relative position of the HS pattern in a price trend. In this paper, a filter that removes invalid HS patterns is proposed. It is found that the risk-adjusted excess returns for the HST pattern generally improve through the use of our filter.
Item Type: | MPRA Paper |
---|---|
Original Title: | A New Recognition Algorithm for “Head-and-Shoulders” Price Patterns |
Language: | English |
Keywords: | Technical analysis; Head-and-shoulders pattern; Kernel regression. |
Subjects: | G - Financial Economics > G0 - General G - Financial Economics > G0 - General > G02 - Behavioral Finance: Underlying Principles |
Item ID: | 60825 |
Depositing User: | Terence T L Chong |
Date Deposited: | 22 Dec 2014 13:18 |
Last Modified: | 26 Sep 2019 16:10 |
References: | Brock, W., Lakonishok, J. and LeBaron, B. (1992). Simple Technical Trading Rules and the Stochastic Properties of Stock Returns. Journal of Finance, 47(5), 1731–1764. Bulkowski, T. N. (1997). The Head-and-Shoulders Formation. Technical Analysis of Stocks and Commodities, 15(8), 366-372. Bulkowski, T. N. (2000). Encyclopedia of Chart Pattern. New York: Wiley. Carhart, M. (1997). On the Persistence in Mutual Fund Performance. Journal of Finance, 52(1), 57–82. Fama, E. F. (1970). Efficient Capital Markets: A Review of Theory and Empirical Work. Journal of Finance, 25(2), 383–417. Fama, E. F. and French, K. R. (1993). Common Risk Factors in the Returns on Stocks and Bonds. Journal of Financial Economics, 3, 3-56. Gencay, R. (1998). Optimization of Technical Trading Strategies and the Profitability in Security Markets. Economics Letters, 59, 249–254. Härdle, W. (1990). Applied Non-parametric Regression. Cambridge, Cambridge University Press. Härdle, W. (1991). Smoothing Techniques: With Implementation in S. New York: Springer-Verlag. Hastie, T. and Loader, C.(1993). Local Regression: Automatic Kernel Carpentry. Statistical Science, 8, 120–143. Hayfield, T., Racine, J. S. (2008). Nonparametric Econometrics: The np Package. Journal of Statistical Software, 27(5), 1-32. Lo, A. W., Mamaysky, H. and Wang, J. (2000). Foundations of Technical Analysis: Computational Algorithms, Statistical Inference, and Empirical Implementation. Journal of Finance, 55(4), 1705–1765. Newey, W. K., and West, K. D. (1987). A Simple Positive Semi-Definite, Heteroskedasticity and Autocorrelation Consistent Covariance Matrix. Econometrica, 55(3), 703–708. Salgado-Ugarte, I. H. and Pérez-Hernández, M. A. (2003). Exploring the Use of Variable Bandwidth Kernel Density Estimators. The Stata Journal, 3(2), 133–147. Savin, G., Weller, P. and Zvingelis, J. (2007). The Predictive Power of “head-and-shoulders” Price Patterns in the US Stock Market. Journal of Financial Econometrics, 5(2), 243-265. Scott, D. W. (1992). Multivariate Density Estimation: Theory, Practice, and Visualization. New York: Wiley. Stone, M. (1977a). Asymptotics For and Against Cross-Validation. Biometrika, 64(1), 29–35. Stone, M. (1977b). An Asymptotic Equivalence of Choice of Model by Cross-Validation and Akaike's Criterion. Journal of the Royal Statistical Society. Series B (Methodological), 39(1), 44–47. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/60825 |