Martinez-Espineira, Roberto (2005): An Estimation of Residential Water Demand Using Co-Integration and Error Correction Techniques. Forthcoming in: Journal of Applied Economics
Preview |
PDF
MPRA_paper_615.pdf Download (380kB) | Preview |
Abstract
In this paper short- and long-run price elasticities of residential water demand are estimated using co-integration and error-correction methods. Unit root tests reveal that water use series and series of other variables affecting use are non-stationary. However, a long-run co-integrating relationship is found in the water demand model, which makes it possible to obtain a partial correction term and to estimate an error correction model. The empirical application uses monthly time-series observations from Seville (Spain). The price-elasticity of demand is estimated as around -0.1 in the short run and -0.5 in the long run. These results are robust to the use of different specifications.
Item Type: | MPRA Paper |
---|---|
Original Title: | An Estimation of Residential Water Demand Using Co-Integration and Error Correction Techniques |
Language: | English |
Keywords: | seasonal unit roots; residential water demand; price elasticity; time-series; co-integration; Error Correction Model |
Subjects: | Q - Agricultural and Natural Resource Economics ; Environmental and Ecological Economics > Q2 - Renewable Resources and Conservation > Q25 - Water C - Mathematical and Quantitative Methods > C2 - Single Equation Models ; Single Variables > C22 - Time-Series Models ; Dynamic Quantile Regressions ; Dynamic Treatment Effect Models ; Diffusion Processes D - Microeconomics > D1 - Household Behavior and Family Economics > D12 - Consumer Economics: Empirical Analysis |
Item ID: | 615 |
Depositing User: | Roberto Martinez-Espineira |
Date Deposited: | 05 May 2008 00:18 |
Last Modified: | 04 Oct 2019 02:08 |
References: | Agthe, D. E. and R. B. Billings (1980). Dynamic models of residential water demand. Water Resources Research 16 (3), 476—480. Agthe, D. E., R. B. Billings, J. L. Dobra, and K. Rafiee (1986). A simultaneous equation demand model for block rates. Water Resources Research 22 (1), 1—4. Andrews, D. and E. Zivot (1992). Further evidence on the Great Crash, the Oil Price shock, and the unit-root hypothesis. Journal of Business and Economic Statistics 10, 251—270. Arbués, F., M. A. García-Valiñas, and R. Martínez-Espiñeira (2003). Estimation of residential water demand: A state of the art review. Journal of Socio-Economics 32 (1), 81—102. Banerjee, A., R. Lumsdaine, and J. H. Stock (1992). Recursive and sequential tests of the unit-root and trend-break hypotheses: Theory and international evidence. Journal of Business and Economic Statistics 10 (3), 271—287. Baum, C. (2000). Tests for stationarity of a time series. Stata Technical Bulletin 57, sts15. Baum, C. F. (2001). The language of choice for time series analysis? The Stata Journal 1 (1), 1—16. Baum, C. F. (2005). CLEMAO_IO: Stata module to perform unit root tests with one or two structural breaks. Statistical Software Components S444302, Boston College Department of Economics, revised 17 Jun 2005. Beaulieu, J. J. and J. A. Miron (1993). Seasonal unit roots in aggregate U.S. data. Journal of Econometrics 55 (1), 305—328. Beenstock, M., E. Goldin, and D. Nabot (1999). The demand for electricity in Israel. Energy Economics 21 (2), 168—183. Bentzen, J. (1994). Empirical analysis of gasoline demand in Denmark using cointegration techniques. Journal of Energy Economics 16 (2), 139—143. Billings, R. B. (1982). Specification of block rate price variables in demand models. Land Economics 58 (3), 386—393. Breusch, T. S. (1978). Testing for autocorrelation in dynamic linear models. Australian Economic Papers 17, 334—355. Breusch, T. V. and A. R. Pagan (1979). A simple test for heteroskedasticity and random coefficient variation. Econometrica 47 (5), 1287—1294. Cavanagh, S. M., W. M. Hanemann, and R. N. Stavins (2002). Muffled price signals:Household water demand under increasing-block prices. FEEM Working Paper No. 40.2002. Chicoine, D. L. and G. Ramamurthy (1986). Evidence on the specification of price in the study of domestic water demand. Land Economics 62(1), 26—32. Clemente, J., A. Montañés, and M. Reyes (1998). Testing for a unit root in variables with a double change in the mean. Economics Letters 59, 175—182. Cook, R. D. and S. Weisberg (1983). Diagnostics for heteroscedasticity in regression. Biometrika 70 (1), 1—10. Dalhuisen, J. M., R. Florax, H. L. F. de Groot, and P. Nijkamp (2003). Price and income elasticities of residential water demand: Why empirical estimates differ. Land Economics 79 (2), 292—308. Dandy, G., T. Nguyen, and C. Davies (1997). Estimating residential water demand in the presence of free allowances. Land Economics 73 (1), 125—139. Dickey, D. A. and W. A. Fuller (1979). Distribution of the estimators for autoregressive time series with a unit root. Journal of the American Statistical Association 74 (366), 427—431. Dickey, D. A. and W. A. Fuller (1981). Likelihood ratio statistics for autoregressive processes. Econometrica 49 (4), 1057—1072. Eguía, B. and C. Echevarría (2004). Unemployment rates and population changes in Spain. Journal of Applied Economics VII (1), 47—76. Elliott, G., T. J. Rothenberg, and J. H. Stock (1996). Efficient tests for an autoregressive unit root. Econometrica 64, 813—836. Eltony, M. N. and N. H. Al-Mutairi (1995). Demand for gasoline in Kuwait. an empiricalanalysis using cointegration techniques. Energy Economics 17 (3), 249—253. EMASESA (1997). Crónica de una Sequía. Sevilla: EMASESA. EMASESA (2000). Water demand management: The perspective of EMASESA. Technical report, EMASESA. Engle, R. (1982). Autoregressive conditional heteroskedasticity with estimates of the variance of United Kingdom inflation. Econometrica 50 (4), 987—1007. Engle, R. and C. W. J. Granger (1987). Cointegration and error correction: Representation, estimation and testing. Econometrica 55 (2), 251—76. Engle, R. F., C. W. J. Granger, and J. S. Hallman (1989). Merging short and long run forecasts: An application of seasonal cointegration to monthly electricity sales forecasting. Journal of Econometrics 40 (1), 45—62. Engle, R. F. and B. S. Yoo (1987). Forecasting and testing in co-integrated systems. Journal of Econometrics 35 (1), 143—159. Fouquet, R. (1995). The impact of VAT introduction on UK residential energy demand. An investigation using the cointegration approach. Energy Economics 17 (3), 237— 247. Franses, P. (1991). Seasonality, nonstationarity and forecasting of monthly time series. International Journal of Forecasting 7, 199—208. García-Valiñas, M. Á. (2002). Residential water demand: The impact of management procedures during shortage periods. Water Intelligence Online 1(May). García-Valiñas, M. A. (2005). Efficiency and equity in natural resources pricing: A proposal for urban water distribution services. Environmental and Resource Economics 32(2), 183 — 204. Godfrey, L. G. (1978). Testing against general autoregressive and moving average error models when the regressors include lagged dependent variables. Econometrica 46 (6), 1293—1301. Hamilton, J. D. (1994). Time Series Analysis. Princeton NJ: Princeton University Press. Hannan, E. and B. G. Quinn (1979). The determination of the order of an autoregression. Journal of the Royal Statistical Society Series B 41 (2), 190—95. Hansen, L. G. (1996). Water and energy price impacts on residential water demand in Copenhagen. Land Economics 72 (1), 66—79. Hendry, D. F., A. R. Pagan, and J. D. Sargan (1984). Dynamic specification. In Z. Grilliches and M. D. Intrilligator (Eds.), Handbook of Econometrics, Volume III. Amsterdam: North-Holland. Hewitt, J. A. and W. M. Hanemann (1995). A discrete/continuous choice approach to residential water demand under block rate pricing. Land Economics 71 (2), 173—192. Höglund, L. (1999). Household demand for water in Sweden with implications of a potential tax on water use. Water Resources Research 35 (12), 3853—3863. Hylleberg, S., R. F. Engle, C. W. J. Granger, and B. S. Yoo (1990). Seasonal integration and cointegration. Journal of Econometrics 44 (1), 215—238. Jarque, C. M. and A. K. Bera (1980). Efficient tests for normality, homoskedasticity, and serial independence of regression residuals. Economics Letters 6, 255—259. Johansen, S. (1988). Statistical analysis of cointegration vectors. Journal of Economic Dynamics and Control 12, 231—254. Johansen, S. and K. Juselius (1990). Maximum likelihood estimation and inference on cointegration - with applications to the demand for money. Oxford Bulletin of Economics and Statistics 52, 169—210. Lyman, R. A. (1992). Peak and off-peak residential water demand. Water Resources Research 28 (9), 2159—67. Martínez-Espiñeira, R. (2002). Residential water demand in the Northwest of Spain. Environmental and Resource Economics 21 (2), 161—187. Martínez-Espiñeira, R. and C. Nauges (2004). Is really all domestic water consumption sensitive to price control? Applied Economics 36 (15), 1697—1703. Moncur, J. (1987). Urban water pricing and drought management. Water Resources Research 23 (3), 393—398. Nauges, C. and A. Thomas (2000). Privately-operated water utilities, municipal price negotiation, and estimation of residential water demand: The case of France. Land Economics 76 (1), 68—85. Nauges, C. and A. Thomas (2001). Dynamique de la consommation d’Eau potable des ménages: Une étude sur un panel de communes françaises. Economie et Prevision 143-144, 175—184. Numéro spécial: ‘Economie de l’Environnement et des Resources Naturelles’. Nauges, C. and A. Thomas (2003). Long-run study of residential water consumption. Environmental and Resource Economics 26 (1), 25—43. Newey, W. K. and K. D. West (1987). A simple positive semi-definite heteroskedasticity and autocorrelation consistent covariance matrix. Econometrica 55 (3), 1029—1054. Ng, S. and P. Perron (1995). Unit root tests in ARMA models with data-dependent methods for the selection of the truncation lag. Journal of the American Statistical Association 90 (268-81), 268—81. Nieswiadomy, M. L. and D. J. Molina (1989). Comparing residential water estimates under decreasing and increasing block rates using household data. Land Economics 65 (3), 280—289. Nordin, J. A. (1976). A proposed modification on Taylor’s demand-supply analysis: Comment. The Bell Journal of Economics 7 (2), 719—721. Osterwald-Lenum, M. (1992). A note with fractiles of the asymptotic distribution of the maximum likelihood cointegration rank test statistics: Four cases. Oxford Bulletin of Economics and Statistics 54 (4), 361—78. Perron, P. (1989). The Great Crash, the Oil Price shock and the unit root hypothesis. Econometrica 58, 1361—1401. Perron, P. (1990). Testing for a unit root in a time series regression with a changing mean. Journal of Business and Economic Statistics 8, 153—162. Perron, P. and T. J. Vogelsang (1992). Nonstationarity and level shifts with an application to purchasing power parity. Journal of Business and Economic Statistics 10, 301—320. Phillips, P. C. B. and P. Perron (1988). Testing for a unit root in time series regression. Biometrika 75 (2), 335—346. Pint, E. (1999). Household responses to increased water rates during the California drought. Land Economics 75 (2), 246—266. Ramanathan, R. (1999). Short- and long-run elasticities of gasoline demand in India: An empirical analysis using cointegration techniques. Energy Economics 21 (4), 321— 330. Renwick, M. E. and S. O. Archibald (1998). Demand side management policies for residential water use: Who bears the conservation burden? Land Economics 74 (3), 343—359. Renwick, M. E. and R. D.Green (2000). Do residential water demand side management policies measure up? An analysis of eight California water agencies. Journal of Environmental Economics and Management 40 (1), 37—55. Rodrigues, P. M. M. and P. H. Franses (2003). A sequential approach to testing seasonal unit roots in high frequency data. Econometric Institute Report 2003-14. Erasmus University Rotterdam. Rodrigues, P. M. M. and D. R. Osborn (1999). Performance of seasonal unit root tests for monthly data. Journal of Applied Statistics 26 (8), 985—1004. Sargan, J. D. and A. Bhargava (1983). Testing residuals from least squares estimators for being generated by the Gaussian Random Walk. Econometrica 51 (1), 153—174. Schefter, J. E. and E. L. David (1985). Estimating residential water demand under multi-tariffs using aggregate data. Land Economics 61 (3), 272—80. Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics 6 (2), 461—464. Schwert, G. W. (1989). Tests for unit roots: A Monte Carlo investigation. Journal of Business and Economic Statistics 7 (2), 147—159. Taylor, L. D. (1975). The demand for electricity: A survey. The Bell Journal of Economics 6(1), 74—110. Taylor, R. G., J. R. McKean, and R. A. Young (2004). Alternate price specifications for estimating residential water demand with fixed fees. Land Economics 80 (3), 463—475. White, H. (1980). A heteroskedasticity-consistent covariance estimator and a direct test for heteroskedasticity. Econometrica 48 (4), 817—838. Wickens, M. R. and T. S. Breusch (1988). Dynamic specification, the long run and the estimation of the transformed regression models. The Economic Journal 98 (390), 189—205. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/615 |