Logo
Munich Personal RePEc Archive

Identifying structural breaks in stochastic mortality models

O'Hare, Colin and Li, Youwei (2014): Identifying structural breaks in stochastic mortality models. Forthcoming in: ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B. Mechanical Engineering

[thumbnail of MPRA_paper_62994.pdf]
Preview
PDF
MPRA_paper_62994.pdf

Download (1MB) | Preview

Abstract

In recent years the issue of life expectancy has become of upmost importance to pension providers, insurance companies and the government bodies in the developed world. Significant and consistent improvements in mortality rates and hence life expectancy have led to unprecedented increases in the cost of providing for older ages. This has resulted in an explosion of stochastic mortality models forecasting trends in mortality data in order to anticipate future life expectancy and hence quantify the costs of providing for future ageing populations. Many stochastic models of mortality rates identify linear trends in mortality rates by time, age and cohort and forecast these trends into the future using standard statistical methods. These approaches rely on the assumption that structural breaks in the trend do not exist or do not have a significant impact on the mortality forecasts. Recent literature has started to question this assumption. In this paper we carry out a comprehensive investigation of the presence or otherwise of structural breaks in a selection of leading mortality models. We find that structural breaks are present in the majority of cases. In particular, where there is a structural break present we find that allowing for that improves the forecast result significantly.

Atom RSS 1.0 RSS 2.0

Contact us: mpra@ub.uni-muenchen.de

This repository has been built using EPrints software.

MPRA is a RePEc service hosted by Logo of the University Library LMU Munich.