Preinerstorfer, David (2014): Finite Sample Properties of Tests Based on Prewhitened Nonparametric Covariance Estimators.
This is the latest version of this item.
Preview |
PDF
MPRA_paper_64245.pdf Download (814kB) | Preview |
Abstract
We analytically investigate size and power properties of a popular family of procedures for testing linear restrictions on the coefficient vector in a linear regression model with temporally dependent errors. The tests considered are autocorrelation-corrected F-type tests based on prewhitened nonparametric covariance estimators that possibly incorporate a data-dependent bandwidth parameter, e.g., estimators as considered in Andrews and Monahan (1992), Newey and West (1994), or Rho and Shao (2013). For design matrices that are generic in a measure theoretic sense we prove that these tests either suffer from extreme size distortions or from strong power deficiencies. Despite this negative result we demonstrate that a simple adjustment procedure based on artificial regressors can often resolve this problem.
Item Type: | MPRA Paper |
---|---|
Original Title: | Finite Sample Properties of Tests Based on Prewhitened Nonparametric Covariance Estimators |
Language: | English |
Keywords: | Autocorrelation robustness, HAC test, fixed-b test, prewhitening, size distortion, power deficiency, artificial regressors. |
Subjects: | C - Mathematical and Quantitative Methods > C1 - Econometric and Statistical Methods and Methodology: General > C12 - Hypothesis Testing: General C - Mathematical and Quantitative Methods > C3 - Multiple or Simultaneous Equation Models ; Multiple Variables > C32 - Time-Series Models ; Dynamic Quantile Regressions ; Dynamic Treatment Effect Models ; Diffusion Processes ; State Space Models |
Item ID: | 64245 |
Depositing User: | David Preinerstorfer |
Date Deposited: | 09 May 2015 14:09 |
Last Modified: | 28 Sep 2019 08:06 |
References: | Andrews, D. W. K. (1991). Heteroskedasticity and autocorrelation consistent covariance matrix estimation. Econometrica, 59, pp. 817-858. Andrews, D. W. K. and Monahan, J. C. (1992). An improved heteroskedasticity and autocorrelation consistent covariance matrix estimator. Econometrica, 60, pp. 953-966. Bartlett, M. S. (1950). Periodogram analysis and continuous spectra. Biometrika, 37, 1-16. den Haan, W. J. and Levin, A. T. (1997). A practitioner's guide to robust covariance matrix estimation. In Robust Inference (G. Maddala and C. Rao, eds.), vol. 15 of Handbook of Statistics. Elsevier, 299 - 342. Grenander, U. and Rosenblatt, M. (1957). Statistical analysis of stationary time series. John Wiley & Sons, New York. Hannan, E. J. (1957). The variance of the mean of a stationary process. Journal of the Royal Statistical Society. Series B, 19. 282-285. Hansen, B. E. (1992). Consistent covariance matrix estimation for dependent heterogeneous processes. Econometrica, 60, pp. 967-972. Jansson, M. (2002). Consistent covariance matrix estimation for linear processes. Econometric Theory, 18, 1449-1459. Jansson, M. (2004). The error in rejection probability of simple autocorrelation robust tests. Econometrica, 72, 937-946. Jowett, G. H. (1955). The comparison of means of sets of observations from sections of independent stochastic series. Journal of the Royal Statistical Society. Series B, 17, 208-227. Kiefer, N. M. and Vogelsang, T. J. (2002). Heteroskedasticity-autocorrelation robust testing using bandwidth equal to sample size. Econometric Theory, 18, 1350-1366. Kiefer, N. M. and Vogelsang, T. J. (2005). A new asymptotic theory for heteroskedasticity- autocorrelation robust tests. Econometric Theory, 21, 1130-1164. Kiefer, N. M., Vogelsang, T. J. and Bunzel, H. (2000). Simple robust testing of regression hypotheses. Econometrica, 68, 695-714. Newey, W. K. and West, K. D. (1987). A simple, positive semidefinite, heteroskedasticity and autocor- relation consistent covariance matrix. Econometrica, 55, 703-708. Newey, W. K. and West, K. D. (1994). Automatic lag selection in covariance matrix estimation. The Review of Economic Studies, 61, pp. 631-653. Okamoto, M. (1973). Distinctness of the eigenvalues of a quadratic form in a multivariate sample. The Annals of Statistics, 763-765. Preinerstorfer, D. and Pötscher, B. M. (2014a). On size and power of heteroskedasticity and autocorrelation robust tests. Econometric Theory, forthcoming. URL http://arxiv.org/abs/1304.1383. Preinerstorfer, D. and Pötscher, B. M. (2014b). On the power of invariant tests for hypotheses on a covariance matrix. Working Paper, Department of Statistics, University of Vienna. URL http: //arxiv.org/abs/1404.1310. Rho, Y. and Shao, X. (2013). Improving the bandwidth-free inference methods by prewhitening. Journal of Statistical Planning and Inference, 143, 1912 - 1922. Schwert, G. (2009). Eviews 7 user's guide II. Quantitative Micro Software, LLC, Irvine, California. Sun, Y., Phillips, P. C. B. and Jin, S. (2008). Optimal bandwidth selection in heteroskedasticity- autocorrelation robust testing. Econometrica, 76, 175-194. Sun, Y., Phillips, P. C. B. and Jin, S. (2011). Power maximization and size control in heteroskedas- ticity and autocorrelation robust tests with exponentiated kernels. Econometric Theory, 27, 1320- 1368. Velasco, C. and Robinson, P. M. (2001). Edgeworth expansions for spectral density estimates and studentized sample mean. Econometric Theory, 17, 497-539. Zeileis, A. (2004). Econometric computing with HC and HAC covariance matrix estimators. Journal of Statistical Software, 11, 1-17. Zhang, X. and Shao, X. (2013). Fixed-smoothing asymptotics for time series. The Annals of Statistics, 41, 1329-1349. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/64245 |
Available Versions of this Item
-
Finite Sample Properties of Tests Based on Prewhitened Nonparametric Covariance Estimators. (deposited 06 Sep 2014 10:12)
- Finite Sample Properties of Tests Based on Prewhitened Nonparametric Covariance Estimators. (deposited 09 May 2015 14:09) [Currently Displayed]